//! Detect grid patterns in images. use super::{Histogram, Image, ImageDrawRect, ImageHistogram, ImageRotate90, Rectangle}; use std::collections::HashSet; // ARC tasks where the grid cannot be detected // 83302e8f - missing grid_mask for train3.input. // 97239e3d - weird grid_mask for test1.input. It's good for the training pairs. #[derive(Clone, Debug)] pub struct GridPattern { pub color: u8, #[allow(dead_code)] pub line_mask: Image, #[allow(dead_code)] pub intersection: u32, #[allow(dead_code)] pub union: u32, #[allow(dead_code)] pub jaccard_index: f32, #[allow(dead_code)] pub horizontal_line_count: u8, #[allow(dead_code)] pub horizontal_cell_count: u8, #[allow(dead_code)] pub vertical_line_count: u8, #[allow(dead_code)] pub vertical_cell_count: u8, // Ideas for more: // horizontal/vertical periodicity // enumerated cell objects // corner mask // detect dots that makes up a grid // convert pixel x,y coordinate to cell x,y coordinate } #[derive(Clone, Debug, PartialEq)] struct Candidate { color: u8, combo: Combo, #[allow(dead_code)] combo_status: ComboStatus, } #[allow(dead_code)] #[derive(Clone, Debug)] pub struct Grid { horizontal_candidates_full: Vec, vertical_candidates_full: Vec, horizontal_candidates_partial: Vec, vertical_candidates_partial: Vec, /// Disallow patterns with the same color. /// /// The patterns are supposed to have unique colors, otherwise sorting the patterns would be non-deterministic. patterns_full: Vec, patterns_partial: Vec, grid_found: bool, grid_color: u8, grid_with_mismatches_found: bool, } impl Grid { pub fn analyze(image: &Image) -> anyhow::Result { let mut instance = Self::new(); instance.perform_analyze(image)?; // Future experiment: // detect horizontal stacks. N cells wide, 1 cell tall. // detect vertical stacks. 1 cell wide, N cells tall. // enumerate cells Ok(instance) } /// Is there an uninterrupted grid. /// /// When a single color is used for both horizontal lines and vertical lines. /// And the lines spans from edge to edge. /// /// Then there is a grid. And this function returns `true`. /// /// If it's interrupted, then it's more uncertain if there is a grid. /// Here the function returns `false`. pub fn grid_found(&self) -> bool { self.grid_found } /// The color used for the uninterrupted grid. /// Then there can only be a single color for the grid. /// /// It's not possible to have an uninterrupted grid using multiple colors. pub fn grid_color(&self) -> u8 { self.grid_color } pub fn patterns_full(&self) -> &Vec { &self.patterns_full } #[allow(dead_code)] pub fn patterns_partial(&self) -> &Vec { &self.patterns_partial } pub fn find_full_pattern_with_color(&self, color: u8) -> Option<&GridPattern> { for pattern in &self.patterns_full { if pattern.color == color { return Some(pattern); } } None } pub fn find_partial_pattern_with_color(&self, color: u8) -> Option<&GridPattern> { for pattern in &self.patterns_partial { if pattern.color == color { return Some(pattern); } } None } /// Is there a grid structure with a few mismatches. /// /// This makes no sense for tiny images, smaller than 5 pixels. /// /// The majority of pixels must agree on a single grid color. /// /// The number of allowed mismatches depends on the size of the images. /// - For bigger images, several mismatches are allowed. /// - For medium sized images, fewer mismatches are allowed. pub fn grid_with_mismatches_found(&self) -> bool { self.grid_with_mismatches_found } fn new() -> Self { Self { horizontal_candidates_full: vec!(), vertical_candidates_full: vec!(), horizontal_candidates_partial: vec!(), vertical_candidates_partial: vec!(), patterns_full: vec!(), patterns_partial: vec!(), grid_found: false, grid_color: u8::MAX, grid_with_mismatches_found: false, } } fn perform_analyze(&mut self, image: &Image) -> anyhow::Result<()> { if image.width() < 2 || image.height() < 2 { // Image is too small. Must be 2x2 or bigger return Ok(()); } let histogram: Histogram = image.histogram_all(); let unique_colors: u16 = histogram.number_of_counters_greater_than_zero(); if unique_colors < 2 { // Too few colors to draw a grid return Ok(()); } self.perform_analyze_with_multiple_colors(image, true)?; let rotated_image: Image = image.rotate_cw()?; self.perform_analyze_with_multiple_colors(&rotated_image, false)?; // println!("horizontal_candidates: {:?}", self.horizontal_candidates); // println!("vertical_candidates: {:?}", self.vertical_candidates); self.update_patterns( image, self.horizontal_candidates_full.clone(), self.vertical_candidates_full.clone(), true, )?; self.update_patterns( image, self.horizontal_candidates_partial.clone(), self.vertical_candidates_partial.clone(), false, )?; // The patterns are supposed to have unique colors. // Thus sorting by color should be deterministic. self.patterns_full.sort_unstable_by_key(|k| k.color); self.patterns_partial.sort_unstable_by_key(|k| k.color); Ok(()) } fn update_patterns(&mut self, image: &Image, horizontal_candidates: Vec, vertical_candidates: Vec, is_full: bool) -> anyhow::Result<()> { let mut candidate_colors = Histogram::new(); for candidate in &horizontal_candidates { candidate_colors.increment(candidate.color); } for candidate in &vertical_candidates { candidate_colors.increment(candidate.color); } let mut grid_found = false; let mut grid_color = u8::MAX; let mut grid_with_mismatches_found = false; for (_count, color) in candidate_colors.pairs_descending() { let candidate0: Option<&Candidate> = horizontal_candidates.iter().find(|candidate| candidate.color == color); let candidate1: Option<&Candidate> = vertical_candidates.iter().find(|candidate| candidate.color == color); let mut mask = Image::zero(image.width(), image.height()); let mut horizontal_lines = false; let mut vertical_lines = false; let mut horizontal_line_count: u8 = 0; let mut horizontal_cell_count: u8 = 1; let mut vertical_line_count: u8 = 0; let mut vertical_cell_count: u8 = 1; if let Some(candidate) = candidate1 { (horizontal_line_count, horizontal_cell_count) = Self::draw_columns(&mut mask, candidate)?; if candidate.combo_status.line_incorrect == 0 && candidate.combo_status.cell_incorrect == 0 { horizontal_lines = true; } } if let Some(candidate) = candidate0 { (vertical_line_count, vertical_cell_count) = Self::draw_rows(&mut mask, candidate)?; if candidate.combo_status.line_incorrect == 0 && candidate.combo_status.cell_incorrect == 0 { vertical_lines = true; } } let cell_count: u16 = (horizontal_cell_count as u16) * (vertical_cell_count as u16); if cell_count < 2 { continue; } let overlap_histogram: Histogram = image.histogram_with_mask(&mask)?; let intersection: u32 = overlap_histogram.get(color); let union: u32 = overlap_histogram.sum(); // println!("is_full: {} intersection: {} union: {}", is_full, intersection, union); if intersection == 0 || union == 0 { continue; } // println!("horizontal_lines: {}", horizontal_lines); // println!("vertical_lines: {}", vertical_lines); let jaccard_index: f32 = (intersection as f32) / (union as f32); // println!("jaccard_index: {}", jaccard_index); if is_full == false && jaccard_index < 0.5 { // The grid pattern has low similarity with the image, ignoring. // println!("ignoring grid that has low similarity with the image"); continue; } // println!("color: {} mask: {:?}", color, mask); let pattern = GridPattern { color, line_mask: mask, intersection, union, jaccard_index, horizontal_line_count, horizontal_cell_count, vertical_line_count, vertical_cell_count, }; if is_full { self.patterns_full.push(pattern); } else { self.patterns_partial.push(pattern); } if horizontal_lines && vertical_lines { if intersection == union { grid_found = true; grid_color = color; } else { grid_with_mismatches_found = true; } } } // Only update grid_found when processing "full grid". Don't update grid_found when analyzing partial patterns if is_full { self.grid_found = grid_found; self.grid_color = grid_color; } // Only update when processing "partial grid patterns". Don't update when processing "full grid". if !is_full { self.grid_with_mismatches_found = grid_with_mismatches_found; } Ok(()) } fn draw_columns(result_image: &mut Image, candidate: &Candidate) -> anyhow::Result<(u8, u8)> { let mut x: i16 = candidate.combo.initial_position; let width: i16 = result_image.width() as i16; let mut mask: Image = result_image.clone(); let mut line_count: u8 = 0; let mut cell_count: u8 = 0; 'outer: for _ in 0..30 { let mut line_count_increment: u8 = 1; for _ in 0..candidate.combo.line_size { if x >= 0 && x < width { line_count += line_count_increment; line_count_increment = 0; let xx = (x & 255) as u8; let r = Rectangle::new(xx, 0, 1, result_image.height()); mask = mask.draw_rect_filled(r, 1)?; } x += 1; if x >= width { break 'outer; } } let mut cell_count_increment: u8 = 1; for _ in 0..candidate.combo.cell_size { if x >= 0 && x < width { cell_count += cell_count_increment; cell_count_increment = 0; } x += 1; if x >= width { break 'outer; } } } result_image.set_image(mask); Ok((line_count, cell_count)) } fn draw_rows(result_image: &mut Image, candidate: &Candidate) -> anyhow::Result<(u8, u8)> { let mut y: i16 = candidate.combo.initial_position; let height: i16 = result_image.height() as i16; let mut mask: Image = result_image.clone(); let mut line_count: u8 = 0; let mut cell_count: u8 = 0; 'outer: for _ in 0..30 { let mut line_count_increment: u8 = 1; for _ in 0..candidate.combo.line_size { if y >= 0 && y < height { line_count += line_count_increment; line_count_increment = 0; let yy = (y & 255) as u8; let r = Rectangle::new(0, yy, result_image.width(), 1); mask = mask.draw_rect_filled(r, 1)?; } y += 1; if y >= height { break 'outer; } } let mut cell_count_increment: u8 = 1; for _ in 0..candidate.combo.cell_size { if y >= 0 && y < height { cell_count += cell_count_increment; cell_count_increment = 0; } y += 1; if y >= height { break 'outer; } } } result_image.set_image(mask); Ok((line_count, cell_count)) } fn perform_analyze_with_multiple_colors(&mut self, image: &Image, is_horizontal: bool) -> anyhow::Result<()> { let rows: Vec = image.histogram_rows(); let mut full_row_colors = Vec::>::new(); let mut partial_row_colors = Vec::>::new(); let mut rows_histogram = Histogram::new(); for (_y, histogram) in rows.iter().enumerate() { let unique_colors: u16 = histogram.number_of_counters_greater_than_zero(); if unique_colors != 1 && image.width() < 5 { full_row_colors.push(None); partial_row_colors.push(None); continue; } let (color, count) = match histogram.most_popular_pair_disallow_ambiguous() { Some(value) => value, None => { full_row_colors.push(None); partial_row_colors.push(None); continue; } }; // Detect grid and allow for some mismatches. // It's a full line when it spans from edge to edge uninterrupted with just one color. // It's a partial line when it's interrupted and contains a few pixels with a different color. if count < (image.width() as u32) * 7 / 10 { full_row_colors.push(None); partial_row_colors.push(None); continue; } // println!("row y: {} color: {}", y, color); if count == image.width() as u32 { full_row_colors.push(Some(color)); partial_row_colors.push(Some(color)); rows_histogram.increment(color); } else { full_row_colors.push(None); partial_row_colors.push(Some(color)); rows_histogram.increment(color); } } // Process full lines // measure spacing between the lines, thickness of lines let mut full_candidates = Vec::::new(); for (_count, color) in rows_histogram.pairs_descending() { let (combo, combo_status) = match Self::measure(color, &full_row_colors) { Ok(value) => value, _ => continue }; let candidate = Candidate { color, combo, combo_status, }; full_candidates.push(candidate); } // Process partial+full lines // When a partial candidate is identical to an already found full_candidate, then discard the partial candidate let mut partial_candidates = Vec::::new(); for (_count, color) in rows_histogram.pairs_descending() { let (combo, combo_status) = match Self::measure(color, &partial_row_colors) { Ok(value) => value, _ => continue }; let candidate = Candidate { color, combo, combo_status, }; if full_candidates.contains(&candidate) { // println!("partial candidate is identical to already found full candidate. Ignoring the partial candidate"); continue; } partial_candidates.push(candidate); } if is_horizontal { self.horizontal_candidates_full = full_candidates; self.horizontal_candidates_partial = partial_candidates; } else { self.vertical_candidates_full = full_candidates; self.vertical_candidates_partial = partial_candidates; } Ok(()) } fn measure(measure_color: u8, row_colors: &Vec>) -> anyhow::Result<(Combo, ComboStatus)> { let mut found_max_possible_line_size: u8 = 0; let mut current_possible_line_size: u8 = 0; let mut found_max_possible_cell_size: u8 = 0; let mut current_possible_cell_size: u8 = 0; let mut positions = Vec::::new(); let mut position_set = HashSet::::new(); for (index, row_color) in row_colors.iter().enumerate() { if *row_color != Some(measure_color) { current_possible_line_size = 0; if current_possible_cell_size < u8::MAX { current_possible_cell_size += 1; } if current_possible_cell_size > found_max_possible_cell_size { found_max_possible_cell_size = current_possible_cell_size; } continue; } current_possible_cell_size = 0; let position: u8 = (index & 255) as u8; positions.push(position); position_set.insert(position as i16); if current_possible_line_size < u8::MAX { current_possible_line_size += 1; } if current_possible_line_size > found_max_possible_line_size { found_max_possible_line_size = current_possible_line_size; } } if positions.is_empty() { return Err(anyhow::anyhow!("positions. Found none")); } if found_max_possible_line_size == 0 { return Err(anyhow::anyhow!("found_max_possible_line_size")); } if found_max_possible_cell_size == 0 { return Err(anyhow::anyhow!("found_max_possible_cell_size")); } let max_line_size: u8 = found_max_possible_line_size; let max_cell_size: u8 = found_max_possible_cell_size; // println!("color: {} positions: {:?}", color, positions); // println!("max_line_size: {}", max_line_size); // println!("max_cell_size: {}", max_cell_size); let mut best = ComboStatus { line_correct: 0, line_incorrect: u8::MAX, cell_correct: 0, cell_incorrect: u8::MAX }; let mut current_error: i32 = i32::MIN; let mut found_combo: Option = None; let max_position: i16 = ((row_colors.len() & 255) as i16) - 1; for cell_size in 1..=max_cell_size { for line_size in 1..=max_line_size { let periodicity_u16: u16 = (cell_size as u16) + (line_size as u16); let periodicity: u8 = (periodicity_u16 & 255) as u8; for offset in 0..periodicity { let initial_position: i16 = -(offset as i16); let combo = Combo { initial_position, line_size, cell_size }; let status: ComboStatus = combo.score(max_position, &position_set); let error: i32 = status.error(); if error > current_error { current_error = error; best = status; found_combo = Some(combo); } } } } // pick combo with optimal score let combo: Combo = match found_combo { Some(value) => value, None => { return Err(anyhow::anyhow!("unable to find a combo that fits the data")); } }; // println!("found combo: {:?} status: {:?} error: {}", combo, best, current_error); Ok((combo, best)) } } #[derive(Clone, Debug, PartialEq)] struct Combo { initial_position: i16, line_size: u8, cell_size: u8 } #[derive(Clone, Debug, PartialEq)] struct ComboStatus { line_correct: u8, line_incorrect: u8, cell_correct: u8, cell_incorrect: u8, } impl ComboStatus { fn error(&self) -> i32 { let line_correct2: u16 = (self.line_correct as u16) * (self.line_correct as u16); let cell_correct2: u16 = (self.cell_correct as u16) * (self.cell_correct as u16); let line_incorrect2: u16 = (self.line_incorrect as u16) * (self.line_incorrect as u16); let cell_incorrect2: u16 = (self.cell_incorrect as u16) * (self.cell_incorrect as u16); let sum: i32 = (line_correct2 as i32) + (cell_correct2 as i32) - (line_incorrect2 as i32) - (cell_incorrect2 as i32); sum } } impl Combo { fn score(&self, max_position: i16, position_set: &HashSet) -> ComboStatus { let mut line_correct: u8 = 0; let mut line_incorrect: u8 = 0; let mut cell_correct: u8 = 0; let mut cell_incorrect: u8 = 0; let mut current_position: i16 = self.initial_position; let biggest_arc_grid_size: u8 = 30 * 2; for _ in 0..biggest_arc_grid_size { for _ in 0..self.line_size { if current_position >= 0 && current_position <= max_position { if position_set.contains(¤t_position) { line_correct += 1; } else { line_incorrect += 1; } } current_position += 1; } for _ in 0..self.cell_size { if current_position >= 0 && current_position <= max_position { if !position_set.contains(¤t_position) { cell_correct += 1; } else { cell_incorrect += 1; } } current_position += 1; } if current_position > max_position { break; } } let status = ComboStatus { line_correct, line_incorrect, cell_correct, cell_incorrect, }; // println!("score: {} {} {} -> {} {} {} {}", self.initial_position, self.line_size, self.cell_size, line_correct, line_incorrect, cell_correct, cell_incorrect); status } } #[cfg(test)] mod tests { use super::*; use crate::arc::ImageTryCreate; #[test] fn test_10000_gridsize1_cellsize1() { // Arrange let pixels: Vec = vec![ 9, 9, 9, 9, 9, 9, 7, 9, 7, 9, 9, 9, 9, 9, 9, 9, 7, 9, 7, 9, 9, 9, 9, 9, 9, ]; let input: Image = Image::try_create(5, 5, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, ]; let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_10001_gridsize1_cellsize3() { // Arrange let pixels: Vec = vec![ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9, 9, 5, 9, 9, 9, 5, 9, 9, 9, 5, 5, 9, 9, 9, 5, 9, 9, 9, 5, 9, 9, 9, 5, 5, 9, 9, 9, 5, 9, 9, 9, 5, 9, 9, 9, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9, 9, 5, 9, 9, 9, 5, 9, 9, 9, 5, 5, 9, 9, 9, 5, 9, 9, 9, 5, 9, 9, 9, 5, 5, 9, 9, 9, 5, 9, 9, 9, 5, 9, 9, 9, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, ]; let input: Image = Image::try_create(13, 9, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ]; let expected: Image = Image::try_create(13, 9, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_10002_gridsize2_cellsize1() { // Arrange let pixels: Vec = vec![ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 7, 7, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 7, 7, 9, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, ]; let input: Image = Image::try_create(8, 8, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ]; let expected: Image = Image::try_create(8, 8, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_10003_gridsize3_offset2_cellsize1() { // Arrange let pixels: Vec = vec![ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ]; let input: Image = Image::try_create(7, 7, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, ]; let expected: Image = Image::try_create(7, 7, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_10004_two_grids_with_different_size() { // Arrange let pixels: Vec = vec![ 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, ]; let input: Image = Image::try_create(4, 14, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert assert_eq!(instance.patterns_full.len(), 3); { let pattern: &GridPattern = &instance.patterns_full[1]; let expected_pixels: Vec = vec![ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, ]; let expected: Image = Image::try_create(4, 14, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } { let pattern: &GridPattern = &instance.patterns_full[2]; let expected_pixels: Vec = vec![ 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ]; let expected: Image = Image::try_create(4, 14, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } } #[test] fn test_10005_split_middle() { // Arrange let pixels: Vec = vec![ 9, 9, 9, 7, 7, 9, 9, 9, 9, 9, 9, 7, 7, 9, 9, 9, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 7, 7, 9, 9, 9, 9, 9, 9, 7, 7, 9, 9, 9, ]; let input: Image = Image::try_create(8, 5, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, ]; let expected: Image = Image::try_create(8, 5, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_10006_detect_grid() { // Arrange let pixels: Vec = vec![ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 5, 0, 5, 0, 0, 0, 0, 5, 0, 5, 0, 5, 0, 0, 5, 0, 5, 0, 5, 0, ]; let input: Image = Image::try_create(7, 7, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, ]; let expected: Image = Image::try_create(7, 7, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_10007_detect_grid() { // Arrange let pixels: Vec = vec![ 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ]; let input: Image = Image::try_create(7, 7, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ]; let expected: Image = Image::try_create(7, 7, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_10008_detect_grid() { // Arrange let pixels: Vec = vec![ 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 1, 0, 2, 2, ]; let input: Image = Image::try_create(5, 5, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert assert_eq!(instance.grid_found, true); assert_eq!(instance.grid_color, 0); assert_eq!(instance.patterns_full.len(), 1); let pattern: &GridPattern = instance.patterns_full.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ]; let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); } #[test] fn test_20000_partial_grid() { // Arrange let pixels: Vec = vec![ 1, 1, 5, 2, 2, 1, 1, 5, 2, 2, 5, 5, 7, 5, 5, 3, 3, 5, 4, 4, 3, 3, 5, 4, 4, ]; let input: Image = Image::try_create(5, 5, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert assert_eq!(instance.grid_found(), false); assert_eq!(instance.patterns_partial.len(), 1); let pattern: &GridPattern = instance.patterns_partial.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ]; let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); assert_eq!(pattern.color, 5); } #[test] fn test_20001_partial_grid() { // Arrange let pixels: Vec = vec![ 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 5, 5, 2, 5, 5, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, ]; let input: Image = Image::try_create(5, 5, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert assert_eq!(instance.grid_found(), false); assert_eq!(instance.patterns_partial.len(), 1); let pattern: &GridPattern = instance.patterns_partial.first().expect("GridPattern"); let expected_pixels: Vec = vec![ 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, ]; let expected: Image = Image::try_create(5, 5, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); assert_eq!(pattern.color, 5); } #[test] fn test_20002_partial_grid() { // Arrange let pixels: Vec = vec![ 2, 2, 5, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 5, 5, 5, 2, 5, 5, 5, 2, 2, 2, 5, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 5, 5, 5, 2, 5, 5, 5, 2, 2, 2, 5, 2, 2, 2, 5, ]; let input: Image = Image::try_create(7, 8, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert assert_eq!(instance.grid_found(), false); assert_eq!(instance.patterns_partial.len(), 2); let pattern: &GridPattern = instance.find_partial_pattern_with_color(5).expect("GridPattern"); let expected_pixels: Vec = vec![ 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, ]; let expected: Image = Image::try_create(7, 8, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); assert_eq!(pattern.color, 5); } #[test] fn test_20003_partial_grid() { // Arrange let pixels: Vec = vec![ 0, 0, 0, 2, 5, 0, 0, 2, 0, 5, 0, 0, 0, 2, 0, 0, 0, 5, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 2, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 0, 2, 0, 0, 5, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 5, 0, 0, 2, 0, 5, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 2, 0, 0, 5, 0, 2, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 2, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 2, 0, 0, ]; let input: Image = Image::try_create(13, 19, pixels).expect("image"); // Act let instance = Grid::analyze(&input).expect("ok"); // Assert assert_eq!(instance.grid_found(), true); assert_eq!(instance.patterns_partial.len(), 2); let pattern: &GridPattern = instance.find_partial_pattern_with_color(5).expect("GridPattern"); let expected_pixels: Vec = vec![ 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, ]; let expected: Image = Image::try_create(13, 19, expected_pixels).expect("image"); assert_eq!(pattern.line_mask, expected); assert_eq!(pattern.color, 5); } }