import time import tqdm import os import json from random import seed as set_seed import dsl from dsl import * import utils from utils import * import generators import verifiers def get_generators() -> dict: """ returns mapper from task identifiers (keys) to example generator functions """ prefix = 'generate_' return { strip_prefix(n, prefix): getattr(generators, n) for n in dir(generators) if n.startswith(prefix) } def get_verifiers() -> dict: """ returns mapper from task identifiers (keys) to example verifier functions """ prefix = 'verify_' return { strip_prefix(n, prefix): getattr(verifiers, n) for n in dir(verifiers) if n.startswith(prefix) } def get_rng_difficulty( example: dict ) -> float: """ RNG-Difficulty: proxy measure for example difficulty, defined as the mean of sampled floats within example generation """ rng = getattr(utils, 'rng') setattr(utils, 'rng', []) return sum(rng) / len(rng) def get_pso_difficulty( example: dict ) -> float: """ PSO-Difficulty: proxy measure for example difficulty, defined as weighted sum of #Pixels, #Symbols, #Objects """ i, o = example['input'], example['output'] hwi = height(i) * width(i) hwo = height(o) * width(o) pix_pct = (hwi + hwo) / 1800 col_pct = len(palette(i) | palette(o)) / 10 obj_dens = (len(objects(i, T, F, F)) / hwi + len(objects(o, T, F, F)) / hwo) / 2 return (pix_pct + col_pct + obj_dens) / 3 def demo_generator(key, n=6): with open(f'arc_original/training/{key}.json', 'r') as fp: original_task = json.load(fp) original_task = original_task['train'] + original_task['test'] generator = getattr(generators, f'generate_{key}') generated_examples = [generator(0, 1) for k in range(n)] plot_task(original_task) plot_task(generated_examples) def generate_dataset( path: str = 're_arc', seed: int = 42, n_examples: int = 1000, diff_lb: float = 0, diff_ub: float = 1 ) -> None: """ generates dataset path: which folder to save data to seed: for deterministic generation / reproducibility n_examples: number of examples per task diff_lb: lower bound for difficulty diff_ub: upper bound for difficulty """ set_seed(seed) os.makedirs(path) tasks_path = os.path.join(path, 'tasks') os.makedirs(tasks_path) generators_mapper = get_generators() verifiers_mapper = get_verifiers() keys = sorted(generators_mapper.keys()) k = len(keys) desc = f'task 0/{k}, example 0/{n_examples}' pbar = tqdm.tqdm(enumerate(keys), desc=desc, position=0, leave=True, total=k) metadata = dict() for i, key in pbar: generator = generators_mapper[key] verifier = verifiers_mapper[key] seen = set() examples = [] stats = { 'n_generations': 0, 'n_verified': 0, 'n_nondegenerate': 0, 'rng_difficulties': [], 'pso_difficulties': [] } start = time.time() while len(examples) < n_examples: example, identifier, success = None, None, True try: example = generator(diff_lb, diff_ub) assert is_grid(example['input']) assert is_grid(example['output']) identifier = hash(example['input']) stats['n_generations'] += 1 except: success = False try: assert success and verifier(example['input']) == example['output'] stats['n_verified'] += 1 except: success = False try: assert success and example['input'] != example['output'] stats['n_nondegenerate'] += 1 except: success = False if success and identifier not in seen: examples.append(example) seen.add(identifier) stats['rng_difficulties'].append(get_rng_difficulty(example)) stats['pso_difficulties'].append(get_pso_difficulty(example)) desc = f'task {i+1}/{k}, example {len(examples)}/{n_examples}' pbar.set_description(desc) end = time.time() stats['runtime'] = end - start with open(os.path.join(tasks_path, f'{key}.json'), 'w') as fp: json.dump(examples, fp) metadata[key] = stats with open(os.path.join(path, 'metadata.json'), 'w') as fp: json.dump(metadata, fp) def demo_dataset( folder: str = 're_arc', n: int = 8, s: int = 0, e: int = 400 ) -> None: """ visualizing snippets from a generated dataset (original, easy, medium and hard instances for each task) """ with open(f'{folder}/metadata.json', 'r') as fp: metadata = json.load(fp) for i, fn in enumerate(sorted(os.listdir(f'{folder}/tasks'))): if s <= i < e: key = fn[:8] with open(f'arc_original/training/{key}.json', 'r') as fp: original_task = json.load(fp) with open(f'{folder}/tasks/{key}.json', 'r') as fp: generated_task = json.load(fp) original_task = [format_example(example) for example in original_task['train'] + original_task['test']] generated_task = [format_example(example) for example in generated_task[:10*n]] difficulties = metadata[key]['pso_difficulties'][:9*n] generated_task = [ex for ex, diff in sorted(zip(generated_task, difficulties), key=lambda item: item[1])] easy = generated_task[1*n:2*n] hard = generated_task[8*n:9*n] print(key) print('original:') plot_task(original_task) print('generated (easy):') plot_task(easy) print('generated (hard):') plot_task(hard) def evaluate_verifiers_on_original_tasks() -> None: """ runs the verifiers on the original ARC training tasks """ verifiers = get_verifiers() dataset = dict() for key in verifiers.keys(): with open(f'arc_original/training/{key}.json', 'r') as fp: task = json.load(fp) dataset[key] = format_task(task) fix_bugs(dataset) failed_on = set() for key, verifier in verifiers.items(): task = dataset[key] try: for example in task['train'] + task['test']: assert verifier(example['input']) == example['output'] except: failed_on.add(key) n = len(dataset) k = len(failed_on) print(f'verification programs work for all examples for {n-k}/{n} tasks') print(f'verification fails (on one example) for tasks {failed_on}')