import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap, Normalize from random import choice, randint, sample, shuffle, uniform from dsl import * global rng rng = [] def unifint( diff_lb: float, diff_ub: float, bounds: Tuple[int, int] ) -> int: """ diff_lb: lower bound for difficulty, must be in range [0, diff_ub] diff_ub: upper bound for difficulty, must be in range [diff_lb, 1] bounds: interval [a, b] determining the integer values that can be sampled """ a, b = bounds d = uniform(diff_lb, diff_ub) global rng rng.append(d) return min(max(a, round(a + (b - a) * d)), b) def is_grid( grid: Any ) -> bool: """ returns True if and only if argument is a valid grid """ if not isinstance(grid, tuple): return False if not len(grid) > 0: return False if not all(isinstance(r, tuple) for r in grid): return False if not all(0 < len(r) <= 30 for r in grid): return False if not len(set(len(r) for r in grid)) == 1: return False if not all(all(isinstance(x, int) for x in r) for r in grid): return False if not all(all(0 <= x <= 9 for x in r) for r in grid): return False return True def strip_prefix( string: str, prefix: str ) -> str: """ removes prefix """ return string[len(prefix):] def format_grid( grid: List[List[int]] ) -> Grid: """ grid type casting """ return tuple(tuple(row) for row in grid) def format_example( example: dict ) -> dict: """ example data type """ return { 'input': format_grid(example['input']), 'output': format_grid(example['output']) } def format_task( task: dict ) -> dict: """ task data type """ return { 'train': [format_example(example) for example in task['train']], 'test': [format_example(example) for example in task['test']] } def plot_task( task: List[dict], title: str = None ) -> None: """ displays a task """ cmap = ListedColormap([ '#000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25' ]) norm = Normalize(vmin=0, vmax=9) args = {'cmap': cmap, 'norm': norm} height = 2 width = len(task) figure_size = (width * 3, height * 3) figure, axes = plt.subplots(height, width, figsize=figure_size) for column, example in enumerate(task): axes[0, column].imshow(example['input'], **args) axes[1, column].imshow(example['output'], **args) axes[0, column].axis('off') axes[1, column].axis('off') if title is not None: figure.suptitle(title, fontsize=20) plt.subplots_adjust(wspace=0.1, hspace=0.1) plt.show() def fix_bugs( dataset: dict ) -> None: """ fixes bugs in the original ARC training dataset """ dataset['a8d7556c']['train'][2]['output'] = fill(dataset['a8d7556c']['train'][2]['output'], 2, {(8, 12), (9, 12)}) dataset['6cf79266']['train'][2]['output'] = fill(dataset['6cf79266']['train'][2]['output'], 1, {(6, 17), (7, 17), (8, 15), (8, 16), (8, 17)}) dataset['469497ad']['train'][1]['output'] = fill(dataset['469497ad']['train'][1]['output'], 7, {(5, 12), (5, 13), (5, 14)}) dataset['9edfc990']['train'][1]['output'] = fill(dataset['9edfc990']['train'][1]['output'], 1, {(6, 13)}) dataset['e5062a87']['train'][1]['output'] = fill(dataset['e5062a87']['train'][1]['output'], 2, {(1, 3), (1, 4), (1, 5), (1, 6)}) dataset['e5062a87']['train'][0]['output'] = fill(dataset['e5062a87']['train'][0]['output'], 2, {(5, 2), (6, 3), (3, 6), (4, 7)})