Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .Config.yml.swp +0 -0
- .bandit +3 -0
- .config.yml.swp +0 -0
- .editorconfig +14 -0
- .flake8 +5 -0
- .gitattributes +3 -0
- .isort.cfg +3 -0
- .mypy.ini +51 -0
- .pre-commit-config.yaml +43 -0
- .pylintrc +14 -0
- .vscode/README.md +1 -0
- .vscode/launch.json +34 -0
- .vscode/tasks.json +27 -0
- Config.yml +0 -0
- FAQS.md +7 -0
- LICENSE +202 -0
- README.md +702 -0
- TODO.md +10 -0
- _quarto.yml +51 -0
- cicd/Dockerfile.jinja +40 -0
- cicd/cicd.sh +5 -0
- cicd/tests.py +75 -0
- config.yml +66 -0
- deepspeed_configs/zero1.json +23 -0
- deepspeed_configs/zero2.json +27 -0
- deepspeed_configs/zero3.json +31 -0
- deepspeed_configs/zero3_bf16.json +31 -0
- deepspeed_configs/zero3_bf16_cpuoffload_all.json +41 -0
- deepspeed_configs/zero3_bf16_cpuoffload_params.json +37 -0
- devtools/README.md +1 -0
- devtools/dev_sharegpt.yml +48 -0
- docker-compose.yaml +25 -0
- docker/Dockerfile +38 -0
- docker/Dockerfile-base +37 -0
- docker/Dockerfile-cloud +27 -0
- docker/Dockerfile-cloud-no-tmux +26 -0
- docker/Dockerfile-tests +41 -0
- docs/.gitignore +2 -0
- docs/batch_vs_grad.qmd +59 -0
- docs/config.qmd +453 -0
- docs/dataset-formats/conversation.qmd +63 -0
- docs/dataset-formats/index.qmd +14 -0
- docs/dataset-formats/inst_tune.qmd +189 -0
- docs/dataset-formats/pretraining.qmd +26 -0
- docs/dataset-formats/template_free.qmd +7 -0
- docs/dataset-formats/tokenized.qmd +12 -0
- docs/dataset_preprocessing.qmd +35 -0
- docs/debugging.qmd +245 -0
- docs/faq.qmd +21 -0
- docs/fsdp_qlora.qmd +43 -0
.Config.yml.swp
ADDED
File without changes
|
.bandit
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[bandit]
|
2 |
+
exclude = tests
|
3 |
+
skips = B101
|
.config.yml.swp
ADDED
File without changes
|
.editorconfig
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
root = true
|
2 |
+
|
3 |
+
[*]
|
4 |
+
end_of_line = lf
|
5 |
+
insert_final_newline = true
|
6 |
+
trim_trailing_whitespace = true
|
7 |
+
|
8 |
+
[*.py]
|
9 |
+
indent_style = space
|
10 |
+
indent_size = 4
|
11 |
+
|
12 |
+
[**.yml]
|
13 |
+
indent_style = space
|
14 |
+
indent_size = 2
|
.flake8
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[flake8]
|
2 |
+
max-line-length = 88
|
3 |
+
|
4 |
+
select = C,E,F,W,B,B950
|
5 |
+
extend-ignore = E203, E501, W503
|
.gitattributes
CHANGED
@@ -53,3 +53,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
wandb/run-20240512_103207-vfqtzg1a/logs/debug-internal.log filter=lfs diff=lfs merge=lfs -text
|
57 |
+
wandb/run-20240512_103207-vfqtzg1a/run-vfqtzg1a.wandb filter=lfs diff=lfs merge=lfs -text
|
58 |
+
wandb/run-20240515_132302-ky6h7dv9/run-ky6h7dv9.wandb filter=lfs diff=lfs merge=lfs -text
|
.isort.cfg
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[settings]
|
2 |
+
profile=black
|
3 |
+
known_third_party=wandb
|
.mypy.ini
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[mypy]
|
2 |
+
plugins = pydantic.mypy
|
3 |
+
exclude = venv
|
4 |
+
|
5 |
+
[mypy-alpaca_lora_4bit.*]
|
6 |
+
ignore_missing_imports = True
|
7 |
+
|
8 |
+
[mypy-axolotl.monkeypatch.*]
|
9 |
+
ignore_errors = True
|
10 |
+
|
11 |
+
[mypy-axolotl.models.mixtral.*]
|
12 |
+
ignore_errors = True
|
13 |
+
|
14 |
+
[mypy-axolotl.models.phi.*]
|
15 |
+
ignore_errors = True
|
16 |
+
|
17 |
+
[mypy-flash_attn.*]
|
18 |
+
ignore_missing_imports = True
|
19 |
+
|
20 |
+
[mypy-huggingface_hub]
|
21 |
+
ignore_missing_imports = True
|
22 |
+
|
23 |
+
[mypy-transformers.*]
|
24 |
+
ignore_missing_imports = True
|
25 |
+
|
26 |
+
[mypy-peft]
|
27 |
+
ignore_missing_imports = True
|
28 |
+
|
29 |
+
[mypy-wandb]
|
30 |
+
ignore_missing_imports = True
|
31 |
+
|
32 |
+
[mypy-bitsandbytes]
|
33 |
+
ignore_missing_imports = True
|
34 |
+
|
35 |
+
[mypy-requests]
|
36 |
+
ignore_missing_imports = True
|
37 |
+
|
38 |
+
[mypy-datasets]
|
39 |
+
ignore_missing_imports = True
|
40 |
+
|
41 |
+
[mypy-fire]
|
42 |
+
ignore_missing_imports = True
|
43 |
+
|
44 |
+
[mypy-setuptools]
|
45 |
+
ignore_missing_imports = True
|
46 |
+
|
47 |
+
[mypy-addict]
|
48 |
+
ignore_missing_imports = True
|
49 |
+
|
50 |
+
[mypy-xformers.*]
|
51 |
+
ignore_missing_imports = True
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_language_version:
|
2 |
+
python: python3
|
3 |
+
|
4 |
+
repos:
|
5 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
6 |
+
rev: v4.4.0
|
7 |
+
hooks:
|
8 |
+
- id: check-yaml
|
9 |
+
- id: end-of-file-fixer
|
10 |
+
- id: trailing-whitespace
|
11 |
+
- repo: https://github.com/psf/black
|
12 |
+
rev: 23.3.0
|
13 |
+
hooks:
|
14 |
+
- id: black
|
15 |
+
- repo: https://github.com/pycqa/isort
|
16 |
+
rev: 5.12.0
|
17 |
+
hooks:
|
18 |
+
- id: isort
|
19 |
+
- repo: https://github.com/PyCQA/flake8
|
20 |
+
rev: 6.0.0
|
21 |
+
hooks:
|
22 |
+
- id: flake8
|
23 |
+
- repo: https://github.com/PyCQA/pylint
|
24 |
+
rev: v2.17.4
|
25 |
+
hooks:
|
26 |
+
- id: pylint
|
27 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
28 |
+
rev: v1.3.0
|
29 |
+
hooks:
|
30 |
+
- id: mypy
|
31 |
+
additional_dependencies:
|
32 |
+
[
|
33 |
+
'types-PyYAML',
|
34 |
+
'pydantic>=2.5.3',
|
35 |
+
]
|
36 |
+
- repo: https://github.com/PyCQA/bandit
|
37 |
+
rev: 1.7.5
|
38 |
+
hooks:
|
39 |
+
- id: bandit
|
40 |
+
args: [
|
41 |
+
'--ini',
|
42 |
+
'.bandit',
|
43 |
+
]
|
.pylintrc
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[MASTER]
|
2 |
+
init-hook="from pylint.config import find_pylintrc; import os, sys; sys.path.append(os.path.dirname(find_pylintrc()))"
|
3 |
+
|
4 |
+
[TYPECHECK]
|
5 |
+
|
6 |
+
# List of members which are set dynamically and missed by Pylint inference
|
7 |
+
# system, and so shouldn't trigger E1101 when accessed.
|
8 |
+
generated-members=numpy.*, torch.*
|
9 |
+
|
10 |
+
|
11 |
+
[pylint.messages_control]
|
12 |
+
disable=missing-function-docstring, line-too-long, import-error,
|
13 |
+
too-many-arguments, too-many-locals, too-many-statements, too-many-branches, too-few-public-methods,
|
14 |
+
too-many-instance-attributes, fixme, import-outside-toplevel, logging-fstring-interpolation,
|
.vscode/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
See [docs/debugging.md](../docs/debugging.md) for guidance on how to modify these files to debug axolotl with VSCode.
|
.vscode/launch.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
// Use IntelliSense to learn about possible attributes.
|
3 |
+
// Hover to view descriptions of existing attributes.
|
4 |
+
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
5 |
+
"version": "0.2.0",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"name": "Debug axolotl prompt - sharegpt",
|
9 |
+
"type": "python",
|
10 |
+
"module": "accelerate.commands.launch",
|
11 |
+
"request": "launch",
|
12 |
+
"args": [
|
13 |
+
"-m", "axolotl.cli.train", "dev_sharegpt.yml",
|
14 |
+
// The flags below simplify debugging by overriding the axolotl config
|
15 |
+
// with the debugging tips above. Modify as needed.
|
16 |
+
"--dataset_processes=1", // limits data preprocessing to one process
|
17 |
+
"--max_steps=1", // limits training to just one step
|
18 |
+
"--batch_size=1", // minimizes batch size
|
19 |
+
"--micro_batch_size=1", // minimizes batch size
|
20 |
+
"--val_set_size=0", // disables validation
|
21 |
+
"--sample_packing=False", // disables sample packing which is necessary for small datasets
|
22 |
+
"--eval_sample_packing=False",// disables sample packing on eval set
|
23 |
+
"--dataset_prepared_path=temp_debug/axolotl_outputs/data", // send data outputs to a temp folder
|
24 |
+
"--output_dir=temp_debug/axolotl_outputs/model" // send model outputs to a temp folder
|
25 |
+
],
|
26 |
+
"console": "integratedTerminal", // show output in the integrated terminal
|
27 |
+
"cwd": "${workspaceFolder}/devtools", // set working directory to devtools from the root of the project
|
28 |
+
"justMyCode": true, // step through only axolotl code
|
29 |
+
"env": {"CUDA_VISIBLE_DEVICES": "0", // Since we aren't doing distributed training, we need to limit to one GPU
|
30 |
+
"HF_HOME": "${workspaceFolder}/devtools/temp_debug/.hf-cache"}, // send HF cache to a temp folder
|
31 |
+
"preLaunchTask": "cleanup-for-dataprep", // delete temp folders (see below)
|
32 |
+
}
|
33 |
+
]
|
34 |
+
}
|
.vscode/tasks.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
//this file is used by launch.json
|
2 |
+
{
|
3 |
+
"version": "2.0.0",
|
4 |
+
"tasks": [
|
5 |
+
// this task changes into the devtools directory and deletes the temp_debug/axolotl_outputs folder
|
6 |
+
{
|
7 |
+
"label": "delete-outputs",
|
8 |
+
"type": "shell",
|
9 |
+
"command": "rm -rf temp_debug/axolotl_outputs",
|
10 |
+
"options":{ "cwd": "${workspaceFolder}/devtools"},
|
11 |
+
"problemMatcher": []
|
12 |
+
},
|
13 |
+
// this task changes into the devtools directory and deletes the `temp_debug/.hf-cache/datasets` folder
|
14 |
+
{
|
15 |
+
"label": "delete-temp-hf-dataset-cache",
|
16 |
+
"type": "shell",
|
17 |
+
"command": "rm -rf temp_debug/.hf-cache/datasets",
|
18 |
+
"options":{ "cwd": "${workspaceFolder}/devtools"},
|
19 |
+
"problemMatcher": []
|
20 |
+
},
|
21 |
+
// this task combines the two tasks above
|
22 |
+
{
|
23 |
+
"label": "cleanup-for-dataprep",
|
24 |
+
"dependsOn": ["delete-outputs", "delete-temp-hf-dataset-cache"],
|
25 |
+
}
|
26 |
+
]
|
27 |
+
}
|
Config.yml
ADDED
File without changes
|
FAQS.md
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FAQs
|
2 |
+
|
3 |
+
- Can you train StableLM with this? Yes, but only with a single GPU atm. Multi GPU support is coming soon! Just waiting on this [PR](https://github.com/huggingface/transformers/pull/22874)
|
4 |
+
- Will this work with Deepspeed? That's still a WIP, but setting `export ACCELERATE_USE_DEEPSPEED=true` should work in some cases
|
5 |
+
- `Error invalid argument at line 359 in file /workspace/bitsandbytes/csrc/pythonInterface.c`
|
6 |
+
`/arrow/cpp/src/arrow/filesystem/s3fs.cc:2598: arrow::fs::FinalizeS3 was not called even though S3 was initialized.`
|
7 |
+
This could lead to a segmentation fault at exit. Try reinstalling bitsandbytes and transformers from source.
|
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
README.md
ADDED
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Axolotl
|
2 |
+
|
3 |
+
Axolotl is a tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures.
|
4 |
+
|
5 |
+
Features:
|
6 |
+
- Train various Huggingface models such as llama, pythia, falcon, mpt
|
7 |
+
- Supports fullfinetune, lora, qlora, relora, and gptq
|
8 |
+
- Customize configurations using a simple yaml file or CLI overwrite
|
9 |
+
- Load different dataset formats, use custom formats, or bring your own tokenized datasets
|
10 |
+
- Integrated with xformer, flash attention, rope scaling, and multipacking
|
11 |
+
- Works with single GPU or multiple GPUs via FSDP or Deepspeed
|
12 |
+
- Easily run with Docker locally or on the cloud
|
13 |
+
- Log results and optionally checkpoints to wandb or mlflow
|
14 |
+
- And more!
|
15 |
+
|
16 |
+
<a href="https://www.phorm.ai/query?projectId=e315ba4a-4e14-421f-ab05-38a1f9076f25">
|
17 |
+
<img alt="phorm.ai" src="https://img.shields.io/badge/Phorm-Ask_AI-%23F2777A.svg?&logo=">
|
18 |
+
</a>
|
19 |
+
|
20 |
+
<table>
|
21 |
+
<tr>
|
22 |
+
<td>
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Introduction](#axolotl)
|
26 |
+
- [Supported Features](#axolotl-supports)
|
27 |
+
- [Quickstart](#quickstart-)
|
28 |
+
- [Environment](#environment)
|
29 |
+
- [Docker](#docker)
|
30 |
+
- [Conda/Pip venv](#condapip-venv)
|
31 |
+
- [Cloud GPU](#cloud-gpu) - Latitude.sh, JarvisLabs, RunPod
|
32 |
+
- [Bare Metal Cloud GPU](#bare-metal-cloud-gpu)
|
33 |
+
- [Windows](#windows)
|
34 |
+
- [Mac](#mac)
|
35 |
+
- [Google Colab](#google-colab)
|
36 |
+
- [Launching on public clouds via SkyPilot](#launching-on-public-clouds-via-skypilot)
|
37 |
+
- [Launching on public clouds via dstack](#launching-on-public-clouds-via-dstack)
|
38 |
+
- [Dataset](#dataset)
|
39 |
+
- [Config](#config)
|
40 |
+
- [Train](#train)
|
41 |
+
- [Inference](#inference-playground)
|
42 |
+
- [Merge LORA to Base](#merge-lora-to-base)
|
43 |
+
- [Special Tokens](#special-tokens)
|
44 |
+
- [All Config Options](#all-config-options)
|
45 |
+
- Advanced Topics
|
46 |
+
- [Multipack](./docs/multipack.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
47 |
+
- [RLHF & DPO](./docs/rlhf.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
48 |
+
- [Dataset Pre-Processing](./docs/dataset_preprocessing.qmd)<svg width="24" height="24" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path d="M17 13.5v6H5v-12h6m3-3h6v6m0-6-9 9" class="icon_svg-stroke" stroke="#666" stroke-width="1.5" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg>
|
49 |
+
- [Common Errors](#common-errors-)
|
50 |
+
- [Tokenization Mismatch b/w Training & Inference](#tokenization-mismatch-bw-inference--training)
|
51 |
+
- [Debugging Axolotl](#debugging-axolotl)
|
52 |
+
- [Need Help?](#need-help-)
|
53 |
+
- [Badge](#badge-)
|
54 |
+
- [Community Showcase](#community-showcase)
|
55 |
+
- [Contributing](#contributing-)
|
56 |
+
- [Sponsors](#sponsors-)
|
57 |
+
|
58 |
+
</td>
|
59 |
+
<td>
|
60 |
+
|
61 |
+
<div align="center">
|
62 |
+
<img src="image/axolotl.png" alt="axolotl" width="160">
|
63 |
+
<div>
|
64 |
+
<p>
|
65 |
+
<b>Axolotl provides a unified repository for fine-tuning <br />a variety of AI models with ease</b>
|
66 |
+
</p>
|
67 |
+
<p>
|
68 |
+
Go ahead and Axolotl questions!!
|
69 |
+
</p>
|
70 |
+
<img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
|
71 |
+
<img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
|
72 |
+
</div>
|
73 |
+
</div>
|
74 |
+
|
75 |
+
</td>
|
76 |
+
</tr>
|
77 |
+
</table>
|
78 |
+
|
79 |
+
## Axolotl supports
|
80 |
+
|
81 |
+
| | fp16/fp32 | lora | qlora | gptq | gptq w/flash attn | flash attn | xformers attn |
|
82 |
+
|-------------|:----------|:-----|-------|------|-------------------|------------|--------------|
|
83 |
+
| llama | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
84 |
+
| Mistral | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
|
85 |
+
| Mixtral-MoE | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ |
|
86 |
+
| Mixtral8X22 | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ |
|
87 |
+
| Pythia | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
|
88 |
+
| cerebras | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
|
89 |
+
| btlm | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
|
90 |
+
| mpt | ✅ | ❌ | ❓ | ❌ | ❌ | ❌ | ❓ |
|
91 |
+
| falcon | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❓ |
|
92 |
+
| gpt-j | ✅ | ✅ | ✅ | ❌ | ❌ | ❓ | ❓ |
|
93 |
+
| XGen | ✅ | ❓ | ✅ | ❓ | ❓ | ❓ | ✅ |
|
94 |
+
| phi | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ |
|
95 |
+
| RWKV | ✅ | ❓ | ❓ | ❓ | ❓ | ❓ | ❓ |
|
96 |
+
| Qwen | ✅ | ✅ | ✅ | ❓ | ❓ | ❓ | ❓ |
|
97 |
+
| Gemma | ✅ | ✅ | ✅ | ❓ | ❓ | ✅ | ❓ |
|
98 |
+
|
99 |
+
✅: supported
|
100 |
+
❌: not supported
|
101 |
+
❓: untested
|
102 |
+
|
103 |
+
## Quickstart ⚡
|
104 |
+
|
105 |
+
Get started with Axolotl in just a few steps! This quickstart guide will walk you through setting up and running a basic fine-tuning task.
|
106 |
+
|
107 |
+
**Requirements**: Python >=3.10 and Pytorch >=2.1.1.
|
108 |
+
|
109 |
+
```bash
|
110 |
+
git clone https://github.com/OpenAccess-AI-Collective/axolotl
|
111 |
+
cd axolotl
|
112 |
+
|
113 |
+
pip3 install packaging ninja
|
114 |
+
pip3 install -e '.[flash-attn,deepspeed]'
|
115 |
+
```
|
116 |
+
|
117 |
+
### Usage
|
118 |
+
```bash
|
119 |
+
# preprocess datasets - optional but recommended
|
120 |
+
CUDA_VISIBLE_DEVICES="" python -m axolotl.cli.preprocess examples/openllama-3b/lora.yml
|
121 |
+
|
122 |
+
# finetune lora
|
123 |
+
accelerate launch -m axolotl.cli.train examples/openllama-3b/lora.yml
|
124 |
+
|
125 |
+
# inference
|
126 |
+
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
|
127 |
+
--lora_model_dir="./lora-out"
|
128 |
+
|
129 |
+
# gradio
|
130 |
+
accelerate launch -m axolotl.cli.inference examples/openllama-3b/lora.yml \
|
131 |
+
--lora_model_dir="./lora-out" --gradio
|
132 |
+
|
133 |
+
# remote yaml files - the yaml config can be hosted on a public URL
|
134 |
+
# Note: the yaml config must directly link to the **raw** yaml
|
135 |
+
accelerate launch -m axolotl.cli.train https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/examples/openllama-3b/lora.yml
|
136 |
+
```
|
137 |
+
|
138 |
+
## Advanced Setup
|
139 |
+
|
140 |
+
### Environment
|
141 |
+
|
142 |
+
#### Docker
|
143 |
+
|
144 |
+
```bash
|
145 |
+
docker run --gpus '"all"' --rm -it winglian/axolotl:main-latest
|
146 |
+
```
|
147 |
+
|
148 |
+
Or run on the current files for development:
|
149 |
+
|
150 |
+
```sh
|
151 |
+
docker compose up -d
|
152 |
+
```
|
153 |
+
|
154 |
+
>[!Tip]
|
155 |
+
> If you want to debug axolotl or prefer to use Docker as your development environment, see the [debugging guide's section on Docker](docs/debugging.qmd#debugging-with-docker).
|
156 |
+
|
157 |
+
<details>
|
158 |
+
|
159 |
+
<summary>Docker advanced</summary>
|
160 |
+
|
161 |
+
A more powerful Docker command to run would be this:
|
162 |
+
|
163 |
+
```bash
|
164 |
+
docker run --privileged --gpus '"all"' --shm-size 10g --rm -it --name axolotl --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --mount type=bind,src="${PWD}",target=/workspace/axolotl -v ${HOME}/.cache/huggingface:/root/.cache/huggingface winglian/axolotl:main-latest
|
165 |
+
```
|
166 |
+
|
167 |
+
It additionally:
|
168 |
+
* Prevents memory issues when running e.g. deepspeed (e.g. you could hit SIGBUS/signal 7 error) through `--ipc` and `--ulimit` args.
|
169 |
+
* Persists the downloaded HF data (models etc.) and your modifications to axolotl code through `--mount`/`-v` args.
|
170 |
+
* The `--name` argument simply makes it easier to refer to the container in vscode (`Dev Containers: Attach to Running Container...`) or in your terminal.
|
171 |
+
* The `--privileged` flag gives all capabilities to the container.
|
172 |
+
* The `--shm-size 10g` argument increases the shared memory size. Use this if you see `exitcode: -7` errors using deepspeed.
|
173 |
+
|
174 |
+
[More information on nvidia website](https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html#setincshmem)
|
175 |
+
|
176 |
+
</details>
|
177 |
+
|
178 |
+
#### Conda/Pip venv
|
179 |
+
1. Install python >=**3.10**
|
180 |
+
|
181 |
+
2. Install pytorch stable https://pytorch.org/get-started/locally/
|
182 |
+
|
183 |
+
3. Install Axolotl along with python dependencies
|
184 |
+
```bash
|
185 |
+
pip3 install packaging
|
186 |
+
pip3 install -e '.[flash-attn,deepspeed]'
|
187 |
+
```
|
188 |
+
4. (Optional) Login to Huggingface to use gated models/datasets.
|
189 |
+
```bash
|
190 |
+
huggingface-cli login
|
191 |
+
```
|
192 |
+
Get the token at huggingface.co/settings/tokens
|
193 |
+
|
194 |
+
#### Cloud GPU
|
195 |
+
|
196 |
+
For cloud GPU providers that support docker images, use [`winglian/axolotl-cloud:main-latest`](https://hub.docker.com/r/winglian/axolotl-cloud/tags)
|
197 |
+
|
198 |
+
- on Latitude.sh use this [direct link](https://latitude.sh/blueprint/989e0e79-3bf6-41ea-a46b-1f246e309d5c)
|
199 |
+
- on JarvisLabs.ai use this [direct link](https://jarvislabs.ai/templates/axolotl)
|
200 |
+
- on RunPod use this [direct link](https://runpod.io/gsc?template=v2ickqhz9s&ref=6i7fkpdz)
|
201 |
+
|
202 |
+
#### Bare Metal Cloud GPU
|
203 |
+
|
204 |
+
##### LambdaLabs
|
205 |
+
|
206 |
+
<details>
|
207 |
+
|
208 |
+
<summary>Click to Expand</summary>
|
209 |
+
|
210 |
+
1. Install python
|
211 |
+
```bash
|
212 |
+
sudo apt update
|
213 |
+
sudo apt install -y python3.10
|
214 |
+
|
215 |
+
sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.10 1
|
216 |
+
sudo update-alternatives --config python # pick 3.10 if given option
|
217 |
+
python -V # should be 3.10
|
218 |
+
|
219 |
+
```
|
220 |
+
|
221 |
+
2. Install pip
|
222 |
+
```bash
|
223 |
+
wget https://bootstrap.pypa.io/get-pip.py
|
224 |
+
python get-pip.py
|
225 |
+
```
|
226 |
+
|
227 |
+
3. Install Pytorch https://pytorch.org/get-started/locally/
|
228 |
+
|
229 |
+
4. Follow instructions on quickstart.
|
230 |
+
|
231 |
+
5. Run
|
232 |
+
```bash
|
233 |
+
pip3 install protobuf==3.20.3
|
234 |
+
pip3 install -U --ignore-installed requests Pillow psutil scipy
|
235 |
+
```
|
236 |
+
|
237 |
+
6. Set path
|
238 |
+
```bash
|
239 |
+
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
|
240 |
+
```
|
241 |
+
</details>
|
242 |
+
|
243 |
+
##### GCP
|
244 |
+
|
245 |
+
<details>
|
246 |
+
|
247 |
+
<summary>Click to Expand</summary>
|
248 |
+
|
249 |
+
Use a Deeplearning linux OS with cuda and pytorch installed. Then follow instructions on quickstart.
|
250 |
+
|
251 |
+
Make sure to run the below to uninstall xla.
|
252 |
+
```bash
|
253 |
+
pip uninstall -y torch_xla[tpu]
|
254 |
+
```
|
255 |
+
|
256 |
+
</details>
|
257 |
+
|
258 |
+
#### Windows
|
259 |
+
Please use WSL or Docker!
|
260 |
+
|
261 |
+
#### Mac
|
262 |
+
|
263 |
+
Use the below instead of the install method in QuickStart.
|
264 |
+
```
|
265 |
+
pip3 install -e '.'
|
266 |
+
```
|
267 |
+
More info: [mac.md](/docs/mac.qmd)
|
268 |
+
|
269 |
+
#### Google Colab
|
270 |
+
|
271 |
+
Please use this example [notebook](examples/colab-notebooks/colab-axolotl-example.ipynb).
|
272 |
+
|
273 |
+
#### Launching on public clouds via SkyPilot
|
274 |
+
To launch on GPU instances (both on-demand and spot instances) on 7+ clouds (GCP, AWS, Azure, OCI, and more), you can use [SkyPilot](https://skypilot.readthedocs.io/en/latest/index.html):
|
275 |
+
|
276 |
+
```bash
|
277 |
+
pip install "skypilot-nightly[gcp,aws,azure,oci,lambda,kubernetes,ibm,scp]" # choose your clouds
|
278 |
+
sky check
|
279 |
+
```
|
280 |
+
|
281 |
+
Get the [example YAMLs](https://github.com/skypilot-org/skypilot/tree/master/llm/axolotl) of using Axolotl to finetune `mistralai/Mistral-7B-v0.1`:
|
282 |
+
```
|
283 |
+
git clone https://github.com/skypilot-org/skypilot.git
|
284 |
+
cd skypilot/llm/axolotl
|
285 |
+
```
|
286 |
+
|
287 |
+
Use one command to launch:
|
288 |
+
```bash
|
289 |
+
# On-demand
|
290 |
+
HF_TOKEN=xx sky launch axolotl.yaml --env HF_TOKEN
|
291 |
+
|
292 |
+
# Managed spot (auto-recovery on preemption)
|
293 |
+
HF_TOKEN=xx BUCKET=<unique-name> sky spot launch axolotl-spot.yaml --env HF_TOKEN --env BUCKET
|
294 |
+
```
|
295 |
+
|
296 |
+
#### Launching on public clouds via dstack
|
297 |
+
To launch on GPU instance (both on-demand and spot instances) on public clouds (GCP, AWS, Azure, Lambda Labs, TensorDock, Vast.ai, and CUDO), you can use [dstack](https://dstack.ai/).
|
298 |
+
|
299 |
+
Write a job description in YAML as below:
|
300 |
+
|
301 |
+
```yaml
|
302 |
+
# dstack.yaml
|
303 |
+
type: task
|
304 |
+
|
305 |
+
image: winglian/axolotl-cloud:main-20240429-py3.11-cu121-2.2.2
|
306 |
+
|
307 |
+
env:
|
308 |
+
- HUGGING_FACE_HUB_TOKEN
|
309 |
+
- WANDB_API_KEY
|
310 |
+
|
311 |
+
commands:
|
312 |
+
- accelerate launch -m axolotl.cli.train config.yaml
|
313 |
+
|
314 |
+
ports:
|
315 |
+
- 6006
|
316 |
+
|
317 |
+
resources:
|
318 |
+
gpu:
|
319 |
+
memory: 24GB..
|
320 |
+
count: 2
|
321 |
+
```
|
322 |
+
|
323 |
+
then, simply run the job with `dstack run` command. Append `--spot` option if you want spot instance. `dstack run` command will show you the instance with cheapest price across multi cloud services:
|
324 |
+
|
325 |
+
```bash
|
326 |
+
pip install dstack
|
327 |
+
HUGGING_FACE_HUB_TOKEN=xxx WANDB_API_KEY=xxx dstack run . -f dstack.yaml # --spot
|
328 |
+
```
|
329 |
+
|
330 |
+
For further and fine-grained use cases, please refer to the official [dstack documents](https://dstack.ai/docs/) and the detailed description of [axolotl example](https://github.com/dstackai/dstack/tree/master/examples/fine-tuning/axolotl) on the official repository.
|
331 |
+
|
332 |
+
### Dataset
|
333 |
+
|
334 |
+
Axolotl supports a variety of dataset formats. It is recommended to use a JSONL. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.
|
335 |
+
|
336 |
+
See [these docs](https://openaccess-ai-collective.github.io/axolotl/docs/dataset-formats/) for more information on how to use different dataset formats.
|
337 |
+
|
338 |
+
### Config
|
339 |
+
|
340 |
+
See [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:
|
341 |
+
|
342 |
+
- model
|
343 |
+
```yaml
|
344 |
+
base_model: ./llama-7b-hf # local or huggingface repo
|
345 |
+
```
|
346 |
+
Note: The code will load the right architecture.
|
347 |
+
|
348 |
+
- dataset
|
349 |
+
```yaml
|
350 |
+
datasets:
|
351 |
+
# huggingface repo
|
352 |
+
- path: vicgalle/alpaca-gpt4
|
353 |
+
type: alpaca
|
354 |
+
|
355 |
+
# huggingface repo with specific configuration/subset
|
356 |
+
- path: EleutherAI/pile
|
357 |
+
name: enron_emails
|
358 |
+
type: completion # format from earlier
|
359 |
+
field: text # Optional[str] default: text, field to use for completion data
|
360 |
+
|
361 |
+
# huggingface repo with multiple named configurations/subsets
|
362 |
+
- path: bigcode/commitpackft
|
363 |
+
name:
|
364 |
+
- ruby
|
365 |
+
- python
|
366 |
+
- typescript
|
367 |
+
type: ... # unimplemented custom format
|
368 |
+
|
369 |
+
# fastchat conversation
|
370 |
+
# See 'conversation' options: https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
371 |
+
- path: ...
|
372 |
+
type: sharegpt
|
373 |
+
conversation: chatml # default: vicuna_v1.1
|
374 |
+
|
375 |
+
# local
|
376 |
+
- path: data.jsonl # or json
|
377 |
+
ds_type: json # see other options below
|
378 |
+
type: alpaca
|
379 |
+
|
380 |
+
# dataset with splits, but no train split
|
381 |
+
- path: knowrohit07/know_sql
|
382 |
+
type: context_qa.load_v2
|
383 |
+
train_on_split: validation
|
384 |
+
|
385 |
+
# loading from s3 or gcs
|
386 |
+
# s3 creds will be loaded from the system default and gcs only supports public access
|
387 |
+
- path: s3://path_to_ds # Accepts folder with arrow/parquet or file path like above. Supports s3, gcs.
|
388 |
+
...
|
389 |
+
|
390 |
+
# Loading Data From a Public URL
|
391 |
+
# - The file format is `json` (which includes `jsonl`) by default. For different formats, adjust the `ds_type` option accordingly.
|
392 |
+
- path: https://some.url.com/yourdata.jsonl # The URL should be a direct link to the file you wish to load. URLs must use HTTPS protocol, not HTTP.
|
393 |
+
ds_type: json # this is the default, see other options below.
|
394 |
+
```
|
395 |
+
|
396 |
+
- loading
|
397 |
+
```yaml
|
398 |
+
load_in_4bit: true
|
399 |
+
load_in_8bit: true
|
400 |
+
|
401 |
+
bf16: auto # require >=ampere, auto will detect if your GPU supports this and choose automatically.
|
402 |
+
fp16: # leave empty to use fp16 when bf16 is 'auto'. set to false if you want to fallback to fp32
|
403 |
+
tf32: true # require >=ampere
|
404 |
+
|
405 |
+
bfloat16: true # require >=ampere, use instead of bf16 when you don't want AMP (automatic mixed precision)
|
406 |
+
float16: true # use instead of fp16 when you don't want AMP
|
407 |
+
```
|
408 |
+
Note: Repo does not do 4-bit quantization.
|
409 |
+
|
410 |
+
- lora
|
411 |
+
```yaml
|
412 |
+
adapter: lora # 'qlora' or leave blank for full finetune
|
413 |
+
lora_r: 8
|
414 |
+
lora_alpha: 16
|
415 |
+
lora_dropout: 0.05
|
416 |
+
lora_target_modules:
|
417 |
+
- q_proj
|
418 |
+
- v_proj
|
419 |
+
```
|
420 |
+
|
421 |
+
#### All Config Options
|
422 |
+
|
423 |
+
See [these docs](docs/config.qmd) for all config options.
|
424 |
+
|
425 |
+
### Train
|
426 |
+
|
427 |
+
Run
|
428 |
+
```bash
|
429 |
+
accelerate launch -m axolotl.cli.train your_config.yml
|
430 |
+
```
|
431 |
+
|
432 |
+
> [!TIP]
|
433 |
+
> You can also reference a config file that is hosted on a public URL, for example `accelerate launch -m axolotl.cli.train https://yourdomain.com/your_config.yml`
|
434 |
+
|
435 |
+
#### Preprocess dataset
|
436 |
+
|
437 |
+
You can optionally pre-tokenize dataset with the following before finetuning.
|
438 |
+
This is recommended for large datasets.
|
439 |
+
|
440 |
+
- Set `dataset_prepared_path:` to a local folder for saving and loading pre-tokenized dataset.
|
441 |
+
- (Optional): Set `push_dataset_to_hub: hf_user/repo` to push it to Huggingface.
|
442 |
+
- (Optional): Use `--debug` to see preprocessed examples.
|
443 |
+
|
444 |
+
```bash
|
445 |
+
python -m axolotl.cli.preprocess your_config.yml
|
446 |
+
```
|
447 |
+
|
448 |
+
#### Multi-GPU
|
449 |
+
|
450 |
+
Below are the options available in axolotl for training with multiple GPUs. Note that DeepSpeed
|
451 |
+
is the recommended multi-GPU option currently because FSDP may experience
|
452 |
+
[loss instability](https://github.com/huggingface/transformers/issues/26498).
|
453 |
+
|
454 |
+
##### DeepSpeed
|
455 |
+
|
456 |
+
Deepspeed is an optimization suite for multi-gpu systems allowing you to train much larger models than you
|
457 |
+
might typically be able to fit into your GPU's VRAM. More information about the various optimization types
|
458 |
+
for deepspeed is available at https://huggingface.co/docs/accelerate/main/en/usage_guides/deepspeed#what-is-integrated
|
459 |
+
|
460 |
+
We provide several default deepspeed JSON configurations for ZeRO stage 1, 2, and 3.
|
461 |
+
|
462 |
+
```yaml
|
463 |
+
deepspeed: deepspeed_configs/zero1.json
|
464 |
+
```
|
465 |
+
|
466 |
+
```shell
|
467 |
+
accelerate launch -m axolotl.cli.train examples/llama-2/config.yml --deepspeed deepspeed_configs/zero1.json
|
468 |
+
```
|
469 |
+
|
470 |
+
##### FSDP
|
471 |
+
|
472 |
+
- llama FSDP
|
473 |
+
```yaml
|
474 |
+
fsdp:
|
475 |
+
- full_shard
|
476 |
+
- auto_wrap
|
477 |
+
fsdp_config:
|
478 |
+
fsdp_offload_params: true
|
479 |
+
fsdp_state_dict_type: FULL_STATE_DICT
|
480 |
+
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
|
481 |
+
```
|
482 |
+
|
483 |
+
##### FSDP + QLoRA
|
484 |
+
|
485 |
+
Axolotl supports training with FSDP and QLoRA, see [these docs](docs/fsdp_qlora.qmd) for more information.
|
486 |
+
|
487 |
+
##### Weights & Biases Logging
|
488 |
+
|
489 |
+
Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
490 |
+
|
491 |
+
- wandb options
|
492 |
+
```yaml
|
493 |
+
wandb_mode:
|
494 |
+
wandb_project:
|
495 |
+
wandb_entity:
|
496 |
+
wandb_watch:
|
497 |
+
wandb_name:
|
498 |
+
wandb_log_model:
|
499 |
+
```
|
500 |
+
|
501 |
+
##### Special Tokens
|
502 |
+
|
503 |
+
It is important to have special tokens like delimiters, end-of-sequence, beginning-of-sequence in your tokenizer's vocabulary. This will help you avoid tokenization issues and help your model train better. You can do this in axolotl like this:
|
504 |
+
|
505 |
+
```yml
|
506 |
+
special_tokens:
|
507 |
+
bos_token: "<s>"
|
508 |
+
eos_token: "</s>"
|
509 |
+
unk_token: "<unk>"
|
510 |
+
tokens: # these are delimiters
|
511 |
+
- "<|im_start|>"
|
512 |
+
- "<|im_end|>"
|
513 |
+
```
|
514 |
+
|
515 |
+
When you include these tokens in your axolotl config, axolotl adds these tokens to the tokenizer's vocabulary.
|
516 |
+
|
517 |
+
### Inference Playground
|
518 |
+
|
519 |
+
Axolotl allows you to load your model in an interactive terminal playground for quick experimentation.
|
520 |
+
The config file is the same config file used for training.
|
521 |
+
|
522 |
+
Pass the appropriate flag to the inference command, depending upon what kind of model was trained:
|
523 |
+
|
524 |
+
- Pretrained LORA:
|
525 |
+
```bash
|
526 |
+
python -m axolotl.cli.inference examples/your_config.yml --lora_model_dir="./lora-output-dir"
|
527 |
+
```
|
528 |
+
- Full weights finetune:
|
529 |
+
```bash
|
530 |
+
python -m axolotl.cli.inference examples/your_config.yml --base_model="./completed-model"
|
531 |
+
```
|
532 |
+
- Full weights finetune w/ a prompt from a text file:
|
533 |
+
```bash
|
534 |
+
cat /tmp/prompt.txt | python -m axolotl.cli.inference examples/your_config.yml \
|
535 |
+
--base_model="./completed-model" --prompter=None --load_in_8bit=True
|
536 |
+
```
|
537 |
+
-- With gradio hosting
|
538 |
+
```bash
|
539 |
+
python -m axolotl.cli.inference examples/your_config.yml --gradio
|
540 |
+
```
|
541 |
+
|
542 |
+
Please use `--sample_packing False` if you have it on and receive the error similar to below:
|
543 |
+
|
544 |
+
> RuntimeError: stack expects each tensor to be equal size, but got [1, 32, 1, 128] at entry 0 and [1, 32, 8, 128] at entry 1
|
545 |
+
|
546 |
+
### Merge LORA to base
|
547 |
+
|
548 |
+
The following command will merge your LORA adapater with your base model. You can optionally pass the argument `--lora_model_dir` to specify the directory where your LORA adapter was saved, otherwhise, this will be inferred from `output_dir` in your axolotl config file. The merged model is saved in the sub-directory `{lora_model_dir}/merged`.
|
549 |
+
|
550 |
+
```bash
|
551 |
+
python3 -m axolotl.cli.merge_lora your_config.yml --lora_model_dir="./completed-model"
|
552 |
+
```
|
553 |
+
|
554 |
+
You may need to use the `gpu_memory_limit` and/or `lora_on_cpu` config options to avoid running out of memory. If you still run out of CUDA memory, you can try to merge in system RAM with
|
555 |
+
|
556 |
+
```bash
|
557 |
+
CUDA_VISIBLE_DEVICES="" python3 -m axolotl.cli.merge_lora ...
|
558 |
+
```
|
559 |
+
|
560 |
+
although this will be very slow, and using the config options above are recommended instead.
|
561 |
+
|
562 |
+
## Common Errors 🧰
|
563 |
+
|
564 |
+
See also the [FAQ's](./docs/faq.qmd) and [debugging guide](docs/debugging.qmd).
|
565 |
+
|
566 |
+
> If you encounter a 'Cuda out of memory' error, it means your GPU ran out of memory during the training process. Here's how to resolve it:
|
567 |
+
|
568 |
+
Please reduce any below
|
569 |
+
- `micro_batch_size`
|
570 |
+
- `eval_batch_size`
|
571 |
+
- `gradient_accumulation_steps`
|
572 |
+
- `sequence_len`
|
573 |
+
|
574 |
+
If it does not help, try running without deepspeed and without accelerate (replace "accelerate launch" with "python") in the command.
|
575 |
+
|
576 |
+
Using adamw_bnb_8bit might also save you some memory.
|
577 |
+
|
578 |
+
> `failed (exitcode: -9)`
|
579 |
+
|
580 |
+
Usually means your system has run out of system memory.
|
581 |
+
Similarly, you should consider reducing the same settings as when you run out of VRAM.
|
582 |
+
Additionally, look into upgrading your system RAM which should be simpler than GPU upgrades.
|
583 |
+
|
584 |
+
> RuntimeError: expected scalar type Float but found Half
|
585 |
+
|
586 |
+
Try set `fp16: true`
|
587 |
+
|
588 |
+
> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...
|
589 |
+
|
590 |
+
Try to turn off xformers.
|
591 |
+
|
592 |
+
> accelerate config missing
|
593 |
+
|
594 |
+
It's safe to ignore it.
|
595 |
+
|
596 |
+
> NCCL Timeouts during training
|
597 |
+
|
598 |
+
See the [NCCL](docs/nccl.qmd) guide.
|
599 |
+
|
600 |
+
|
601 |
+
### Tokenization Mismatch b/w Inference & Training
|
602 |
+
|
603 |
+
For many formats, Axolotl constructs prompts by concatenating token ids _after_ tokenizing strings. The reason for concatenating token ids rather than operating on strings is to maintain precise accounting for attention masks.
|
604 |
+
|
605 |
+
If you decode a prompt constructed by axolotl, you might see spaces between tokens (or lack thereof) that you do not expect, especially around delimiters and special tokens. When you are starting out with a new format, you should always do the following:
|
606 |
+
|
607 |
+
1. Materialize some data using `python -m axolotl.cli.preprocess your_config.yml --debug`, and then decode the first few rows with your model's tokenizer.
|
608 |
+
2. During inference, right before you pass a tensor of token ids to your model, decode these tokens back into a string.
|
609 |
+
3. Make sure the inference string from #2 looks **exactly** like the data you fine tuned on from #1, including spaces and new lines. If they aren't the same, adjust your inference server accordingly.
|
610 |
+
4. As an additional troubleshooting step, you can look at the token ids between 1 and 2 to make sure they are identical.
|
611 |
+
|
612 |
+
Having misalignment between your prompts during training and inference can cause models to perform very poorly, so it is worth checking this. See [this blog post](https://hamel.dev/notes/llm/05_tokenizer_gotchas.html) for a concrete example.
|
613 |
+
|
614 |
+
## Debugging Axolotl
|
615 |
+
|
616 |
+
See [this debugging guide](docs/debugging.qmd) for tips on debugging Axolotl, along with an example configuration for debugging with VSCode.
|
617 |
+
|
618 |
+
## Need help? 🙋
|
619 |
+
|
620 |
+
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we our community members can help you.
|
621 |
+
|
622 |
+
Need dedicated support? Please contact us at [✉️[email protected]](mailto:[email protected]) for dedicated support options.
|
623 |
+
|
624 |
+
## Badge ❤🏷️
|
625 |
+
|
626 |
+
Building something cool with Axolotl? Consider adding a badge to your model card.
|
627 |
+
|
628 |
+
```markdown
|
629 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
630 |
+
```
|
631 |
+
|
632 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
633 |
+
|
634 |
+
## Community Showcase
|
635 |
+
|
636 |
+
Check out some of the projects and models that have been built using Axolotl! Have a model you'd like to add to our Community Showcase? Open a PR with your model.
|
637 |
+
|
638 |
+
Open Access AI Collective
|
639 |
+
- [Minotaur 13b](https://huggingface.co/openaccess-ai-collective/minotaur-13b-fixed)
|
640 |
+
- [Manticore 13b](https://huggingface.co/openaccess-ai-collective/manticore-13b)
|
641 |
+
- [Hippogriff 30b](https://huggingface.co/openaccess-ai-collective/hippogriff-30b-chat)
|
642 |
+
|
643 |
+
PocketDoc Labs
|
644 |
+
- [Dan's PersonalityEngine 13b LoRA](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-13b-LoRA)
|
645 |
+
|
646 |
+
## Contributing 🤝
|
647 |
+
|
648 |
+
Please read the [contributing guide](./.github/CONTRIBUTING.md)
|
649 |
+
|
650 |
+
Bugs? Please check the [open issues](https://github.com/OpenAccess-AI-Collective/axolotl/issues/bug) else create a new Issue.
|
651 |
+
|
652 |
+
PRs are **greatly welcome**!
|
653 |
+
|
654 |
+
Please run the quickstart instructions followed by the below to setup env:
|
655 |
+
```bash
|
656 |
+
pip3 install -r requirements-dev.txt -r requirements-tests.txt
|
657 |
+
pre-commit install
|
658 |
+
|
659 |
+
# test
|
660 |
+
pytest tests/
|
661 |
+
|
662 |
+
# optional: run against all files
|
663 |
+
pre-commit run --all-files
|
664 |
+
```
|
665 |
+
|
666 |
+
Thanks to all of our contributors to date. Help drive open source AI progress forward by contributing to Axolotl.
|
667 |
+
|
668 |
+
<a href="https://github.com/openaccess-ai-collective/axolotl/graphs/contributors">
|
669 |
+
<img src="https://contrib.rocks/image?repo=openaccess-ai-collective/axolotl" alt="contributor chart by https://contrib.rocks"/>
|
670 |
+
</a>
|
671 |
+
|
672 |
+
## Sponsors 🤝❤
|
673 |
+
|
674 |
+
OpenAccess AI Collective is run by volunteer contributors such as [winglian](https://github.com/winglian),
|
675 |
+
[NanoCode012](https://github.com/NanoCode012), [tmm1](https://github.com/tmm1),
|
676 |
+
[mhenrichsen](https://github.com/mhenrichsen), [casper-hansen](https://github.com/casper-hansen),
|
677 |
+
[hamelsmu](https://github.com/hamelsmu) and many more who help us accelerate forward by fixing bugs, answering
|
678 |
+
community questions and implementing new features. Axolotl needs donations from sponsors for the compute needed to
|
679 |
+
run our unit & integration tests, troubleshooting community issues, and providing bounties. If you love axolotl,
|
680 |
+
consider sponsoring the project via [GitHub Sponsors](https://github.com/sponsors/OpenAccess-AI-Collective),
|
681 |
+
[Ko-fi](https://ko-fi.com/axolotl_ai) or reach out directly to
|
682 |
+
[[email protected]](mailto:[email protected]).
|
683 |
+
|
684 |
+
---
|
685 |
+
|
686 |
+
#### 💎 Diamond Sponsors - [Contact directly](mailto:[email protected])
|
687 |
+
|
688 |
+
---
|
689 |
+
|
690 |
+
#### 🥇 Gold Sponsors - $5000/mo
|
691 |
+
|
692 |
+
---
|
693 |
+
|
694 |
+
#### 🥈 Silver Sponsors - $1000/mo
|
695 |
+
|
696 |
+
---
|
697 |
+
|
698 |
+
#### 🥉 Bronze Sponsors - $500/mo
|
699 |
+
|
700 |
+
- [JarvisLabs.ai](https://jarvislabs.ai)
|
701 |
+
|
702 |
+
---
|
TODO.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# todo list
|
2 |
+
|
3 |
+
- [] Validation of parameters for combinations that won't work
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
## things that are known not to work
|
8 |
+
|
9 |
+
- FSDP offload and gradient_checkpointing - https://github.com/pytorch/pytorch/issues/82203
|
10 |
+
- adamw_bnb_8bit doesn't play well with FSDP offload
|
_quarto.yml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
project:
|
2 |
+
type: website
|
3 |
+
|
4 |
+
website:
|
5 |
+
title: "Axolotl"
|
6 |
+
description: "Fine-tuning"
|
7 |
+
favicon: favicon.jpg
|
8 |
+
navbar:
|
9 |
+
title: Axolotl
|
10 |
+
background: dark
|
11 |
+
pinned: false
|
12 |
+
collapse: false
|
13 |
+
tools:
|
14 |
+
- icon: twitter
|
15 |
+
href: https://twitter.com/axolotl_ai
|
16 |
+
- icon: github
|
17 |
+
href: https://github.com/OpenAccess-AI-Collective/axolotl/
|
18 |
+
- icon: discord
|
19 |
+
href: https://discord.gg/7m9sfhzaf3
|
20 |
+
|
21 |
+
sidebar:
|
22 |
+
pinned: true
|
23 |
+
collapse-level: 2
|
24 |
+
style: docked
|
25 |
+
contents:
|
26 |
+
- text: Home
|
27 |
+
href: index.qmd
|
28 |
+
- section: "How-To Guides"
|
29 |
+
contents:
|
30 |
+
# TODO Edit folder structure after we have more docs.
|
31 |
+
- docs/debugging.qmd
|
32 |
+
- docs/multipack.qmd
|
33 |
+
- docs/fsdp_qlora.qmd
|
34 |
+
- docs/input_output.qmd
|
35 |
+
- docs/rlhf.qmd
|
36 |
+
- docs/nccl.qmd
|
37 |
+
- docs/mac.qmd
|
38 |
+
- docs/multi-node.qmd
|
39 |
+
- section: "Dataset Formats"
|
40 |
+
contents: docs/dataset-formats/*
|
41 |
+
- section: "Reference"
|
42 |
+
contents:
|
43 |
+
- docs/config.qmd
|
44 |
+
- docs/faq.qmd
|
45 |
+
|
46 |
+
|
47 |
+
format:
|
48 |
+
html:
|
49 |
+
theme: materia
|
50 |
+
css: styles.css
|
51 |
+
toc: true
|
cicd/Dockerfile.jinja
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM winglian/axolotl-base:{{ BASE_TAG }}
|
2 |
+
|
3 |
+
ENV TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6+PTX"
|
4 |
+
ENV AXOLOTL_EXTRAS="{{ AXOLOTL_EXTRAS }}"
|
5 |
+
ENV AXOLOTL_ARGS="{{ AXOLOTL_ARGS }}"
|
6 |
+
ENV CUDA="{{ CUDA }}"
|
7 |
+
ENV BNB_CUDA_VERSION="{{ CUDA }}"
|
8 |
+
ENV PYTORCH_VERSION="{{ PYTORCH_VERSION }}"
|
9 |
+
ENV GITHUB_REF="{{ GITHUB_REF }}"
|
10 |
+
ENV GITHUB_SHA="{{ GITHUB_SHA }}"
|
11 |
+
|
12 |
+
RUN apt-get update && \
|
13 |
+
apt-get install -y --allow-change-held-packages vim curl nano libnccl2 libnccl-dev
|
14 |
+
|
15 |
+
WORKDIR /workspace
|
16 |
+
|
17 |
+
RUN git clone --depth=1 https://github.com/OpenAccess-AI-Collective/axolotl.git
|
18 |
+
|
19 |
+
WORKDIR /workspace/axolotl
|
20 |
+
|
21 |
+
RUN git fetch origin +$GITHUB_REF && \
|
22 |
+
git checkout FETCH_HEAD
|
23 |
+
|
24 |
+
# If AXOLOTL_EXTRAS is set, append it in brackets
|
25 |
+
RUN pip install causal_conv1d
|
26 |
+
RUN if [ "$AXOLOTL_EXTRAS" != "" ] ; then \
|
27 |
+
pip install -e .[deepspeed,flash-attn,mamba-ssm,galore,$AXOLOTL_EXTRAS] $AXOLOTL_ARGS; \
|
28 |
+
else \
|
29 |
+
pip install -e .[deepspeed,flash-attn,mamba-ssm,galore] $AXOLOTL_ARGS; \
|
30 |
+
fi
|
31 |
+
|
32 |
+
# So we can test the Docker image
|
33 |
+
RUN pip install pytest
|
34 |
+
|
35 |
+
# fix so that git fetch/pull from remote works
|
36 |
+
RUN git config remote.origin.fetch "+refs/heads/*:refs/remotes/origin/*" && \
|
37 |
+
git config --get remote.origin.fetch
|
38 |
+
|
39 |
+
# helper for huggingface-login cli
|
40 |
+
RUN git config --global credential.helper store
|
cicd/cicd.sh
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
pytest --ignore=tests/e2e/ /workspace/axolotl/tests/
|
4 |
+
pytest /workspace/axolotl/tests/e2e/patched/
|
5 |
+
pytest --ignore=tests/e2e/patched/ /workspace/axolotl/tests/e2e/
|
cicd/tests.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modal application to run axolotl gpu tests in Modal
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import tempfile
|
7 |
+
|
8 |
+
import jinja2
|
9 |
+
import modal
|
10 |
+
from jinja2 import select_autoescape
|
11 |
+
from modal import Image, Stub
|
12 |
+
|
13 |
+
cicd_path = pathlib.Path(__file__).parent.resolve()
|
14 |
+
|
15 |
+
template_loader = jinja2.FileSystemLoader(searchpath=cicd_path)
|
16 |
+
template_env = jinja2.Environment(
|
17 |
+
loader=template_loader, autoescape=select_autoescape()
|
18 |
+
)
|
19 |
+
df_template = template_env.get_template("Dockerfile.jinja")
|
20 |
+
|
21 |
+
df_args = {
|
22 |
+
"AXOLOTL_EXTRAS": os.environ.get("AXOLOTL_EXTRAS", ""),
|
23 |
+
"AXOLOTL_ARGS": os.environ.get("AXOLOTL_ARGS", ""),
|
24 |
+
"PYTORCH_VERSION": os.environ.get("PYTORCH_VERSION", "2.0.1"),
|
25 |
+
"BASE_TAG": os.environ.get("BASE_TAG", "main-base-py3.10-cu118-2.0.1"),
|
26 |
+
"CUDA": os.environ.get("CUDA", "118"),
|
27 |
+
"GITHUB_REF": os.environ.get("GITHUB_REF", "refs/heads/main"),
|
28 |
+
"GITHUB_SHA": os.environ.get("GITHUB_SHA", ""),
|
29 |
+
}
|
30 |
+
|
31 |
+
dockerfile_contents = df_template.render(**df_args)
|
32 |
+
|
33 |
+
temp_dir = tempfile.mkdtemp()
|
34 |
+
with open(pathlib.Path(temp_dir) / "Dockerfile", "w", encoding="utf-8") as f:
|
35 |
+
f.write(dockerfile_contents)
|
36 |
+
|
37 |
+
cicd_image = (
|
38 |
+
Image.from_dockerfile(
|
39 |
+
pathlib.Path(temp_dir) / "Dockerfile",
|
40 |
+
force_build=True,
|
41 |
+
gpu="A10G",
|
42 |
+
)
|
43 |
+
.env(df_args)
|
44 |
+
.pip_install("fastapi==0.110.0", "pydantic==2.6.3")
|
45 |
+
)
|
46 |
+
|
47 |
+
stub = Stub("Axolotl CI/CD", secrets=[])
|
48 |
+
|
49 |
+
|
50 |
+
N_GPUS = int(os.environ.get("N_GPUS", 1))
|
51 |
+
GPU_CONFIG = modal.gpu.A10G(count=N_GPUS)
|
52 |
+
|
53 |
+
|
54 |
+
def run_cmd(cmd: str, run_folder: str):
|
55 |
+
import subprocess # nosec
|
56 |
+
|
57 |
+
# Propagate errors from subprocess.
|
58 |
+
if exit_code := subprocess.call(cmd.split(), cwd=run_folder): # nosec
|
59 |
+
exit(exit_code) # pylint: disable=consider-using-sys-exit
|
60 |
+
|
61 |
+
|
62 |
+
@stub.function(
|
63 |
+
image=cicd_image,
|
64 |
+
gpu=GPU_CONFIG,
|
65 |
+
timeout=45 * 60,
|
66 |
+
cpu=8.0,
|
67 |
+
memory=131072,
|
68 |
+
)
|
69 |
+
def cicd_pytest():
|
70 |
+
run_cmd("./cicd/cicd.sh", "/workspace/axolotl")
|
71 |
+
|
72 |
+
|
73 |
+
@stub.local_entrypoint()
|
74 |
+
def main():
|
75 |
+
cicd_pytest.remote()
|
config.yml
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: PygmalionAI/pyggel-ckpt-2947
|
2 |
+
load_in_8bit: false
|
3 |
+
load_in_4bit: false
|
4 |
+
strict: false
|
5 |
+
|
6 |
+
datasets:
|
7 |
+
- path: PygmalionAI/unified-rp-dataset
|
8 |
+
type: sharegpt
|
9 |
+
|
10 |
+
chat_template: llama3
|
11 |
+
dataset_prepared_path: ./datasetstuff3
|
12 |
+
hub_model_id: Alignment-Lab-AI/pygmalion-3-1m-2.4
|
13 |
+
wandb_project: pyg-1-m-2.3
|
14 |
+
hf_use_auth_token: true
|
15 |
+
output_dir: ./pyg1m2.3
|
16 |
+
|
17 |
+
wandb_watch: all
|
18 |
+
hub_private_repo: true
|
19 |
+
hub_strategy: all_checkpoints
|
20 |
+
push_to_hub: true
|
21 |
+
hf_use_auth_token: true
|
22 |
+
output_dir: ./pyggel
|
23 |
+
max_grad_norm: 0.6
|
24 |
+
sequence_len: 8192
|
25 |
+
sample_packing: true
|
26 |
+
pad_to_sequence_len: true
|
27 |
+
micro_batch_size: 1
|
28 |
+
gradient_accumulation_steps: 1
|
29 |
+
num_epochs: 3
|
30 |
+
learning_rate: 0.0001
|
31 |
+
optimizer: adamw_bnb_8bit
|
32 |
+
optim_args:
|
33 |
+
amsgrad: true
|
34 |
+
lr_scheduler: cosine
|
35 |
+
train_on_inputs: true
|
36 |
+
group_by_length: false
|
37 |
+
bfloat16: false
|
38 |
+
fp16:
|
39 |
+
tf32: false
|
40 |
+
neftune_noise_alpha: 15
|
41 |
+
gradient_checkpointing: unsloth
|
42 |
+
gradient_checkpointing_kwargs:
|
43 |
+
use_reentrant: true
|
44 |
+
logging_steps: 1
|
45 |
+
xformers_attention:
|
46 |
+
flash_attention: true
|
47 |
+
unsloth_cross_entropy_loss: true
|
48 |
+
#unsloth_lora_mlp: true
|
49 |
+
#unsloth_lora_qkv: true
|
50 |
+
#unsloth_lora_o: true
|
51 |
+
flash_attn_cross_entropy: false
|
52 |
+
flash_attn_rms_norm: true
|
53 |
+
flash_attn_fuse_qkv: false
|
54 |
+
flash_attn_fuse_mlp: true
|
55 |
+
warmup_ratio: 0.5
|
56 |
+
evals_per_step: 0.025
|
57 |
+
eval_table_size:
|
58 |
+
saves_per_epoch: 15
|
59 |
+
debug:
|
60 |
+
torch_compile: true
|
61 |
+
rank:
|
62 |
+
deepspeed: deepspeed_configs/zero1.json
|
63 |
+
weight_decay: 0.01
|
64 |
+
special_tokens:
|
65 |
+
eos_token: "<|eot_id|>"
|
66 |
+
pad_token: "<|end_of_text|>"
|
deepspeed_configs/zero1.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_optimization": {
|
3 |
+
"stage": 1,
|
4 |
+
"overlap_comm": true
|
5 |
+
},
|
6 |
+
"bf16": {
|
7 |
+
"enabled": "auto"
|
8 |
+
},
|
9 |
+
"fp16": {
|
10 |
+
"enabled": "auto",
|
11 |
+
"auto_cast": false,
|
12 |
+
"loss_scale": 0,
|
13 |
+
"initial_scale_power": 32,
|
14 |
+
"loss_scale_window": 1000,
|
15 |
+
"hysteresis": 2,
|
16 |
+
"min_loss_scale": 1
|
17 |
+
},
|
18 |
+
"gradient_accumulation_steps": "auto",
|
19 |
+
"gradient_clipping": "auto",
|
20 |
+
"train_batch_size": "auto",
|
21 |
+
"train_micro_batch_size_per_gpu": "auto",
|
22 |
+
"wall_clock_breakdown": false
|
23 |
+
}
|
deepspeed_configs/zero2.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_optimization": {
|
3 |
+
"stage": 2,
|
4 |
+
"offload_optimizer": {
|
5 |
+
"device": "cpu"
|
6 |
+
},
|
7 |
+
"contiguous_gradients": true,
|
8 |
+
"overlap_comm": true
|
9 |
+
},
|
10 |
+
"bf16": {
|
11 |
+
"enabled": "auto"
|
12 |
+
},
|
13 |
+
"fp16": {
|
14 |
+
"enabled": "auto",
|
15 |
+
"auto_cast": false,
|
16 |
+
"loss_scale": 0,
|
17 |
+
"initial_scale_power": 32,
|
18 |
+
"loss_scale_window": 1000,
|
19 |
+
"hysteresis": 2,
|
20 |
+
"min_loss_scale": 1
|
21 |
+
},
|
22 |
+
"gradient_accumulation_steps": "auto",
|
23 |
+
"gradient_clipping": "auto",
|
24 |
+
"train_batch_size": "auto",
|
25 |
+
"train_micro_batch_size_per_gpu": "auto",
|
26 |
+
"wall_clock_breakdown": false
|
27 |
+
}
|
deepspeed_configs/zero3.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_optimization": {
|
3 |
+
"stage": 3,
|
4 |
+
"overlap_comm": true,
|
5 |
+
"contiguous_gradients": true,
|
6 |
+
"sub_group_size": 0,
|
7 |
+
"reduce_bucket_size": "auto",
|
8 |
+
"stage3_prefetch_bucket_size": "auto",
|
9 |
+
"stage3_param_persistence_threshold": "auto",
|
10 |
+
"stage3_max_live_parameters": 0,
|
11 |
+
"stage3_max_reuse_distance": 0,
|
12 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
13 |
+
},
|
14 |
+
"bf16": {
|
15 |
+
"enabled": "auto"
|
16 |
+
},
|
17 |
+
"fp16": {
|
18 |
+
"enabled": "auto",
|
19 |
+
"auto_cast": false,
|
20 |
+
"loss_scale": 0,
|
21 |
+
"initial_scale_power": 32,
|
22 |
+
"loss_scale_window": 1000,
|
23 |
+
"hysteresis": 2,
|
24 |
+
"min_loss_scale": 1
|
25 |
+
},
|
26 |
+
"gradient_accumulation_steps": "auto",
|
27 |
+
"gradient_clipping": "auto",
|
28 |
+
"train_batch_size": "auto",
|
29 |
+
"train_micro_batch_size_per_gpu": "auto",
|
30 |
+
"wall_clock_breakdown": false
|
31 |
+
}
|
deepspeed_configs/zero3_bf16.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_optimization": {
|
3 |
+
"stage": 3,
|
4 |
+
"overlap_comm": true,
|
5 |
+
"contiguous_gradients": true,
|
6 |
+
"sub_group_size": 0,
|
7 |
+
"reduce_bucket_size": "auto",
|
8 |
+
"stage3_prefetch_bucket_size": "auto",
|
9 |
+
"stage3_param_persistence_threshold": "auto",
|
10 |
+
"stage3_max_live_parameters": 0,
|
11 |
+
"stage3_max_reuse_distance": 0,
|
12 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
13 |
+
},
|
14 |
+
"bf16": {
|
15 |
+
"enabled": true
|
16 |
+
},
|
17 |
+
"fp16": {
|
18 |
+
"enabled": "auto",
|
19 |
+
"auto_cast": false,
|
20 |
+
"loss_scale": 0,
|
21 |
+
"initial_scale_power": 32,
|
22 |
+
"loss_scale_window": 1000,
|
23 |
+
"hysteresis": 2,
|
24 |
+
"min_loss_scale": 1
|
25 |
+
},
|
26 |
+
"gradient_accumulation_steps": "auto",
|
27 |
+
"gradient_clipping": "auto",
|
28 |
+
"train_batch_size": "auto",
|
29 |
+
"train_micro_batch_size_per_gpu": "auto",
|
30 |
+
"wall_clock_breakdown": false
|
31 |
+
}
|
deepspeed_configs/zero3_bf16_cpuoffload_all.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_force_ds_cpu_optimizer": false,
|
3 |
+
"zero_allow_untested_optimizer": true,
|
4 |
+
"zero_optimization": {
|
5 |
+
"stage": 3,
|
6 |
+
"offload_optimizer": {
|
7 |
+
"device": "cpu",
|
8 |
+
"pin_memory": true
|
9 |
+
},
|
10 |
+
"offload_param": {
|
11 |
+
"device": "cpu",
|
12 |
+
"pin_memory": true
|
13 |
+
},
|
14 |
+
"overlap_comm": true,
|
15 |
+
"contiguous_gradients": true,
|
16 |
+
"sub_group_size": 0,
|
17 |
+
"reduce_bucket_size": "auto",
|
18 |
+
"stage3_prefetch_bucket_size": "auto",
|
19 |
+
"stage3_param_persistence_threshold": "auto",
|
20 |
+
"stage3_max_live_parameters": 0,
|
21 |
+
"stage3_max_reuse_distance": 0,
|
22 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
23 |
+
},
|
24 |
+
"bf16": {
|
25 |
+
"enabled": true
|
26 |
+
},
|
27 |
+
"fp16": {
|
28 |
+
"enabled": "auto",
|
29 |
+
"auto_cast": false,
|
30 |
+
"loss_scale": 0,
|
31 |
+
"initial_scale_power": 32,
|
32 |
+
"loss_scale_window": 1000,
|
33 |
+
"hysteresis": 2,
|
34 |
+
"min_loss_scale": 1
|
35 |
+
},
|
36 |
+
"gradient_accumulation_steps": "auto",
|
37 |
+
"gradient_clipping": "auto",
|
38 |
+
"train_batch_size": "auto",
|
39 |
+
"train_micro_batch_size_per_gpu": "auto",
|
40 |
+
"wall_clock_breakdown": false
|
41 |
+
}
|
deepspeed_configs/zero3_bf16_cpuoffload_params.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_force_ds_cpu_optimizer": false,
|
3 |
+
"zero_allow_untested_optimizer": true,
|
4 |
+
"zero_optimization": {
|
5 |
+
"stage": 3,
|
6 |
+
"offload_param": {
|
7 |
+
"device": "cpu",
|
8 |
+
"pin_memory": true
|
9 |
+
},
|
10 |
+
"overlap_comm": true,
|
11 |
+
"contiguous_gradients": true,
|
12 |
+
"sub_group_size": 0,
|
13 |
+
"reduce_bucket_size": "auto",
|
14 |
+
"stage3_prefetch_bucket_size": "auto",
|
15 |
+
"stage3_param_persistence_threshold": "auto",
|
16 |
+
"stage3_max_live_parameters": 0,
|
17 |
+
"stage3_max_reuse_distance": 0,
|
18 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
19 |
+
},
|
20 |
+
"bf16": {
|
21 |
+
"enabled": true
|
22 |
+
},
|
23 |
+
"fp16": {
|
24 |
+
"enabled": "auto",
|
25 |
+
"auto_cast": false,
|
26 |
+
"loss_scale": 0,
|
27 |
+
"initial_scale_power": 32,
|
28 |
+
"loss_scale_window": 1000,
|
29 |
+
"hysteresis": 2,
|
30 |
+
"min_loss_scale": 1
|
31 |
+
},
|
32 |
+
"gradient_accumulation_steps": "auto",
|
33 |
+
"gradient_clipping": "auto",
|
34 |
+
"train_batch_size": "auto",
|
35 |
+
"train_micro_batch_size_per_gpu": "auto",
|
36 |
+
"wall_clock_breakdown": false
|
37 |
+
}
|
devtools/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
This directory contains example config files that might be useful for debugging. Please see [docs/debugging.qmd](../docs/debugging.qmd) for more information.
|
devtools/dev_sharegpt.yml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Example config for debugging the sharegpt prompt format
|
2 |
+
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
|
3 |
+
model_type: LlamaForCausalLM
|
4 |
+
tokenizer_type: LlamaTokenizer
|
5 |
+
|
6 |
+
load_in_8bit: true
|
7 |
+
load_in_4bit: false
|
8 |
+
|
9 |
+
datasets:
|
10 |
+
- path: philschmid/guanaco-sharegpt-style
|
11 |
+
type: sharegpt
|
12 |
+
shards: 10
|
13 |
+
val_set_size: 0
|
14 |
+
output_dir: temp_debug/axolotl_outputs/model
|
15 |
+
dataset_prepared_path: temp_debug/axolotl_outputs/data
|
16 |
+
dataset_processes: 1
|
17 |
+
|
18 |
+
sequence_len: 4096
|
19 |
+
sample_packing: false
|
20 |
+
pad_to_sequence_len: true
|
21 |
+
|
22 |
+
adapter: lora
|
23 |
+
lora_model_dir:
|
24 |
+
lora_r: 32
|
25 |
+
lora_alpha: 16
|
26 |
+
lora_dropout: 0.05
|
27 |
+
lora_target_linear: true
|
28 |
+
lora_fan_in_fan_out:
|
29 |
+
|
30 |
+
micro_batch_size: 1
|
31 |
+
num_epochs: 1
|
32 |
+
max_steps: 10
|
33 |
+
optimizer: adamw_bnb_8bit
|
34 |
+
lr_scheduler: cosine
|
35 |
+
learning_rate: 0.0002
|
36 |
+
|
37 |
+
train_on_inputs: false
|
38 |
+
group_by_length: false
|
39 |
+
bf16: false
|
40 |
+
fp16: true
|
41 |
+
tf32: false
|
42 |
+
|
43 |
+
gradient_checkpointing: true
|
44 |
+
logging_steps: 1
|
45 |
+
flash_attention: true
|
46 |
+
|
47 |
+
warmup_steps: 10
|
48 |
+
weight_decay: 0.0
|
docker-compose.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# version: '3.8'
|
2 |
+
services:
|
3 |
+
axolotl:
|
4 |
+
build:
|
5 |
+
context: .
|
6 |
+
dockerfile: ./docker/Dockerfile
|
7 |
+
volumes:
|
8 |
+
- .:/workspace/axolotl
|
9 |
+
- ~/.cache/huggingface/:/root/.cache/huggingface/
|
10 |
+
# set environment variables
|
11 |
+
environment:
|
12 |
+
# Set environment variables
|
13 |
+
- GIT_AUTHOR_NAME=${GIT_AUTHOR_NAME}
|
14 |
+
- GIT_AUTHOR_EMAIL=${GIT_AUTHOR_EMAIL}
|
15 |
+
- GIT_COMMITTER_NAME=${GIT_COMMITTER_NAME}
|
16 |
+
- GIT_COMMITTER_EMAIL=${GIT_COMMITTER_EMAIL}
|
17 |
+
- WANDB_API_KEY=${WANDB_API_KEY}
|
18 |
+
deploy:
|
19 |
+
resources:
|
20 |
+
reservations:
|
21 |
+
devices:
|
22 |
+
- driver: nvidia
|
23 |
+
# count: 1
|
24 |
+
capabilities: [gpu]
|
25 |
+
command: tail -f /dev/null
|
docker/Dockerfile
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG BASE_TAG=main-base
|
2 |
+
FROM winglian/axolotl-base:$BASE_TAG
|
3 |
+
|
4 |
+
ARG TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6+PTX"
|
5 |
+
ARG AXOLOTL_EXTRAS=""
|
6 |
+
ARG AXOLOTL_ARGS=""
|
7 |
+
ARG CUDA="118"
|
8 |
+
ENV BNB_CUDA_VERSION=$CUDA
|
9 |
+
ARG PYTORCH_VERSION="2.1.2"
|
10 |
+
|
11 |
+
ENV PYTORCH_VERSION=$PYTORCH_VERSION
|
12 |
+
|
13 |
+
RUN apt-get update && \
|
14 |
+
apt-get install -y --allow-change-held-packages vim curl nano libnccl2 libnccl-dev rsync s3fs
|
15 |
+
|
16 |
+
WORKDIR /workspace
|
17 |
+
|
18 |
+
RUN git clone --depth=1 https://github.com/OpenAccess-AI-Collective/axolotl.git
|
19 |
+
|
20 |
+
WORKDIR /workspace/axolotl
|
21 |
+
|
22 |
+
# If AXOLOTL_EXTRAS is set, append it in brackets
|
23 |
+
RUN pip install causal_conv1d
|
24 |
+
RUN if [ "$AXOLOTL_EXTRAS" != "" ] ; then \
|
25 |
+
pip install -e .[deepspeed,flash-attn,mamba-ssm,galore,$AXOLOTL_EXTRAS] $AXOLOTL_ARGS; \
|
26 |
+
else \
|
27 |
+
pip install -e .[deepspeed,flash-attn,mamba-ssm,galore] $AXOLOTL_ARGS; \
|
28 |
+
fi
|
29 |
+
|
30 |
+
# So we can test the Docker image
|
31 |
+
RUN pip install pytest
|
32 |
+
|
33 |
+
# fix so that git fetch/pull from remote works
|
34 |
+
RUN git config remote.origin.fetch "+refs/heads/*:refs/remotes/origin/*" && \
|
35 |
+
git config --get remote.origin.fetch
|
36 |
+
|
37 |
+
# helper for huggingface-login cli
|
38 |
+
RUN git config --global credential.helper store
|
docker/Dockerfile-base
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG CUDA_VERSION="11.8.0"
|
2 |
+
ARG CUDNN_VERSION="8"
|
3 |
+
ARG UBUNTU_VERSION="22.04"
|
4 |
+
ARG MAX_JOBS=4
|
5 |
+
|
6 |
+
FROM nvidia/cuda:$CUDA_VERSION-cudnn$CUDNN_VERSION-devel-ubuntu$UBUNTU_VERSION as base-builder
|
7 |
+
|
8 |
+
ENV PATH="/root/miniconda3/bin:${PATH}"
|
9 |
+
|
10 |
+
ARG PYTHON_VERSION="3.10"
|
11 |
+
ARG PYTORCH_VERSION="2.1.2"
|
12 |
+
ARG CUDA="118"
|
13 |
+
ARG TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 9.0+PTX"
|
14 |
+
|
15 |
+
ENV PYTHON_VERSION=$PYTHON_VERSION
|
16 |
+
ENV TORCH_CUDA_ARCH_LIST=$TORCH_CUDA_ARCH_LIST
|
17 |
+
|
18 |
+
RUN apt-get update \
|
19 |
+
&& apt-get install -y wget git build-essential ninja-build git-lfs libaio-dev && rm -rf /var/lib/apt/lists/* \
|
20 |
+
&& wget \
|
21 |
+
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
|
22 |
+
&& mkdir /root/.conda \
|
23 |
+
&& bash Miniconda3-latest-Linux-x86_64.sh -b \
|
24 |
+
&& rm -f Miniconda3-latest-Linux-x86_64.sh \
|
25 |
+
&& conda create -n "py${PYTHON_VERSION}" python="${PYTHON_VERSION}"
|
26 |
+
|
27 |
+
ENV PATH="/root/miniconda3/envs/py${PYTHON_VERSION}/bin:${PATH}"
|
28 |
+
|
29 |
+
WORKDIR /workspace
|
30 |
+
|
31 |
+
RUN python3 -m pip install --upgrade pip && pip3 install packaging && \
|
32 |
+
python3 -m pip install --no-cache-dir -U torch==${PYTORCH_VERSION}+cu${CUDA} --extra-index-url https://download.pytorch.org/whl/cu$CUDA
|
33 |
+
|
34 |
+
RUN git lfs install --skip-repo && \
|
35 |
+
pip3 install awscli && \
|
36 |
+
# The base image ships with `pydantic==1.8.2` which is not working
|
37 |
+
pip3 install -U --no-cache-dir pydantic==1.10.10
|
docker/Dockerfile-cloud
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG BASE_TAG=main
|
2 |
+
FROM winglian/axolotl:$BASE_TAG
|
3 |
+
|
4 |
+
ENV HF_DATASETS_CACHE="/workspace/data/huggingface-cache/datasets"
|
5 |
+
ENV HUGGINGFACE_HUB_CACHE="/workspace/data/huggingface-cache/hub"
|
6 |
+
ENV TRANSFORMERS_CACHE="/workspace/data/huggingface-cache/hub"
|
7 |
+
ENV HF_HOME="/workspace/data/huggingface-cache/hub"
|
8 |
+
ENV HF_HUB_ENABLE_HF_TRANSFER="1"
|
9 |
+
|
10 |
+
EXPOSE 8888
|
11 |
+
EXPOSE 22
|
12 |
+
|
13 |
+
COPY scripts/cloud-entrypoint.sh /root/cloud-entrypoint.sh
|
14 |
+
COPY scripts/motd /etc/motd
|
15 |
+
|
16 |
+
RUN pip install jupyterlab notebook ipywidgets && \
|
17 |
+
jupyter lab clean
|
18 |
+
RUN apt install --yes --no-install-recommends openssh-server tmux && \
|
19 |
+
mkdir -p ~/.ssh && \
|
20 |
+
chmod 700 ~/.ssh && \
|
21 |
+
printf "\n[[ -z \"\$TMUX\" ]] && { tmux attach-session -t ssh_tmux || tmux new-session -s ssh_tmux; exit; }\n" >> ~/.bashrc && \
|
22 |
+
printf "[ ! -z \"\$TERM\" -a -r /etc/motd ] && cat /etc/motd\n" >> ~/.bashrc && \
|
23 |
+
chmod +x /workspace/axolotl/scripts/cloud-entrypoint.sh && \
|
24 |
+
chmod +x /root/cloud-entrypoint.sh
|
25 |
+
|
26 |
+
ENTRYPOINT ["/root/cloud-entrypoint.sh"]
|
27 |
+
CMD ["sleep", "infinity"]
|
docker/Dockerfile-cloud-no-tmux
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG BASE_TAG=main
|
2 |
+
FROM winglian/axolotl:$BASE_TAG
|
3 |
+
|
4 |
+
ENV HF_DATASETS_CACHE="/workspace/data/huggingface-cache/datasets"
|
5 |
+
ENV HUGGINGFACE_HUB_CACHE="/workspace/data/huggingface-cache/hub"
|
6 |
+
ENV TRANSFORMERS_CACHE="/workspace/data/huggingface-cache/hub"
|
7 |
+
ENV HF_HOME="/workspace/data/huggingface-cache/hub"
|
8 |
+
ENV HF_HUB_ENABLE_HF_TRANSFER="1"
|
9 |
+
|
10 |
+
EXPOSE 8888
|
11 |
+
EXPOSE 22
|
12 |
+
|
13 |
+
COPY scripts/cloud-entrypoint.sh /root/cloud-entrypoint.sh
|
14 |
+
COPY scripts/motd /etc/motd
|
15 |
+
|
16 |
+
RUN pip install jupyterlab notebook ipywidgets && \
|
17 |
+
jupyter lab clean
|
18 |
+
RUN apt install --yes --no-install-recommends openssh-server tmux && \
|
19 |
+
mkdir -p ~/.ssh && \
|
20 |
+
chmod 700 ~/.ssh && \
|
21 |
+
printf "[ ! -z \"\$TERM\" -a -r /etc/motd ] && cat /etc/motd\n" >> ~/.bashrc && \
|
22 |
+
chmod +x /workspace/axolotl/scripts/cloud-entrypoint.sh && \
|
23 |
+
chmod +x /root/cloud-entrypoint.sh
|
24 |
+
|
25 |
+
ENTRYPOINT ["/root/cloud-entrypoint.sh"]
|
26 |
+
CMD ["sleep", "infinity"]
|
docker/Dockerfile-tests
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ARG BASE_TAG=main-base
|
2 |
+
FROM winglian/axolotl-base:$BASE_TAG
|
3 |
+
|
4 |
+
ARG TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6+PTX"
|
5 |
+
ARG AXOLOTL_EXTRAS=""
|
6 |
+
ARG AXOLOTL_ARGS=""
|
7 |
+
ARG CUDA="118"
|
8 |
+
ENV BNB_CUDA_VERSION=$CUDA
|
9 |
+
ARG PYTORCH_VERSION="2.1.2"
|
10 |
+
ARG GITHUB_REF="main"
|
11 |
+
|
12 |
+
ENV PYTORCH_VERSION=$PYTORCH_VERSION
|
13 |
+
|
14 |
+
RUN apt-get update && \
|
15 |
+
apt-get install -y --allow-change-held-packages vim curl nano libnccl2 libnccl-dev
|
16 |
+
|
17 |
+
WORKDIR /workspace
|
18 |
+
|
19 |
+
RUN git clone --depth=1 https://github.com/OpenAccess-AI-Collective/axolotl.git
|
20 |
+
|
21 |
+
WORKDIR /workspace/axolotl
|
22 |
+
|
23 |
+
RUN git fetch origin +$GITHUB_REF && \
|
24 |
+
git checkout FETCH_HEAD
|
25 |
+
|
26 |
+
# If AXOLOTL_EXTRAS is set, append it in brackets
|
27 |
+
RUN if [ "$AXOLOTL_EXTRAS" != "" ] ; then \
|
28 |
+
pip install -e .[deepspeed,flash-attn,mamba-ssm,$AXOLOTL_EXTRAS] $AXOLOTL_ARGS; \
|
29 |
+
else \
|
30 |
+
pip install -e .[deepspeed,flash-attn,mamba-ssm] $AXOLOTL_ARGS; \
|
31 |
+
fi
|
32 |
+
|
33 |
+
# So we can test the Docker image
|
34 |
+
RUN pip install pytest
|
35 |
+
|
36 |
+
# fix so that git fetch/pull from remote works
|
37 |
+
RUN git config remote.origin.fetch "+refs/heads/*:refs/remotes/origin/*" && \
|
38 |
+
git config --get remote.origin.fetch
|
39 |
+
|
40 |
+
# helper for huggingface-login cli
|
41 |
+
RUN git config --global credential.helper store
|
docs/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
/.quarto/
|
2 |
+
_site/
|
docs/batch_vs_grad.qmd
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Batch size vs Gradient accumulation
|
3 |
+
description: Understanding of batch size and gradient accumulation steps
|
4 |
+
---
|
5 |
+
|
6 |
+
Gradient accumulation means accumulating gradients over several mini-batches and updating the model weights afterward. When the samples in each batch are diverse, this technique doesn't significantly impact learning.
|
7 |
+
|
8 |
+
This method allows for effective training with larger effective batch sizes without needing proportionally larger memory. Here's why:
|
9 |
+
|
10 |
+
1. **Memory Consumption with Batch Size**: The primary reason increasing the batch size impacts memory is due to the storage requirements for intermediate activations. When you forward propagate a batch through a network, you have to store the activations at each layer for each sample in the batch, because these activations are used during backpropagation to compute gradients. Therefore, larger batches mean more activations, leading to greater GPU memory consumption.
|
11 |
+
|
12 |
+
2. **Gradient Accumulation**: With gradient accumulation, you're effectively simulating a larger batch size by accumulating gradients over several smaller batches (or micro-batches). However, at any given time, you're only forward and backward propagating a micro-batch. This means you only store activations for the micro-batch, not the full accumulated batch. As a result, you can simulate the effect of a larger batch size without the memory cost of storing activations for a large batch.
|
13 |
+
|
14 |
+
**Example 1:**
|
15 |
+
Micro batch size: 3
|
16 |
+
Gradient accumulation steps: 2
|
17 |
+
Number of GPUs: 3
|
18 |
+
Total batch size = 3 * 2 * 3 = 18
|
19 |
+
|
20 |
+
```
|
21 |
+
| GPU 1 | GPU 2 | GPU 3 |
|
22 |
+
|----------------|----------------|----------------|
|
23 |
+
| S1, S2, S3 | S4, S5, S6 | S7, S8, S9 |
|
24 |
+
| e1, e2, e3 | e4, e5, e6 | e7, e8, e9 |
|
25 |
+
|----------------|----------------|----------------|
|
26 |
+
| → (accumulate) | → (accumulate) | → (accumulate) |
|
27 |
+
|----------------|----------------|----------------|
|
28 |
+
| S10, S11, S12 | S13, S14, S15 | S16, S17, S18 |
|
29 |
+
| e10, e11, e12 | e13, e14, e15 | e16, e17, e18 |
|
30 |
+
|----------------|----------------|----------------|
|
31 |
+
| → (apply) | → (apply) | → (apply) |
|
32 |
+
|
33 |
+
Accumulated gradient for the weight w1 after the second iteration (considering all GPUs):
|
34 |
+
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 + e9 + e10 + e11 + e12 + e13 + e14 + e15 + e16 + e17 + e18
|
35 |
+
|
36 |
+
Weight update for w1:
|
37 |
+
w1_new = w1_old - learning rate x (Total gradient for w1 / 18)
|
38 |
+
```
|
39 |
+
|
40 |
+
**Example 2:**
|
41 |
+
Micro batch size: 2
|
42 |
+
Gradient accumulation steps: 1
|
43 |
+
Number of GPUs: 3
|
44 |
+
Total batch size = 2 * 1 * 3 = 6
|
45 |
+
|
46 |
+
```
|
47 |
+
| GPU 1 | GPU 2 | GPU 3 |
|
48 |
+
|-----------|-----------|-----------|
|
49 |
+
| S1, S2 | S3, S4 | S5, S6 |
|
50 |
+
| e1, e2 | e3, e4 | e5, e6 |
|
51 |
+
|-----------|-----------|-----------|
|
52 |
+
| → (apply) | → (apply) | → (apply) |
|
53 |
+
|
54 |
+
Accumulated gradient for the weight w1 (considering all GPUs):
|
55 |
+
Total gradient for w1 = e1 + e2 + e3 + e4 + e5 + e6
|
56 |
+
|
57 |
+
Weight update for w1:
|
58 |
+
w1_new = w1_old - learning rate × (Total gradient for w1 / 6)
|
59 |
+
```
|
docs/config.qmd
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Config options
|
3 |
+
description: A complete list of all configuration options.
|
4 |
+
---
|
5 |
+
|
6 |
+
```yaml
|
7 |
+
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
|
8 |
+
# This can also be a relative path to a model on disk
|
9 |
+
base_model: ./llama-7b-hf
|
10 |
+
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
|
11 |
+
base_model_ignore_patterns:
|
12 |
+
# If the base_model repo on hf hub doesn't include configuration .json files,
|
13 |
+
# You can set that here, or leave this empty to default to base_model
|
14 |
+
base_model_config: ./llama-7b-hf
|
15 |
+
# You can specify to choose a specific model revision from huggingface hub
|
16 |
+
revision_of_model:
|
17 |
+
# Optional tokenizer configuration path in case you want to use a different tokenizer
|
18 |
+
# than the one defined in the base model
|
19 |
+
tokenizer_config:
|
20 |
+
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
|
21 |
+
model_type: AutoModelForCausalLM
|
22 |
+
# Corresponding tokenizer for the model AutoTokenizer is a good choice
|
23 |
+
tokenizer_type: AutoTokenizer
|
24 |
+
# Trust remote code for untrusted source
|
25 |
+
trust_remote_code:
|
26 |
+
# use_fast option for tokenizer loading from_pretrained, default to True
|
27 |
+
tokenizer_use_fast:
|
28 |
+
# Whether to use the legacy tokenizer setting, defaults to True
|
29 |
+
tokenizer_legacy:
|
30 |
+
# Resize the model embeddings when new tokens are added to multiples of 32
|
31 |
+
# This is reported to improve training speed on some models
|
32 |
+
resize_token_embeddings_to_32x:
|
33 |
+
|
34 |
+
# (Internal use only)
|
35 |
+
# Used to identify which the model is based on
|
36 |
+
is_falcon_derived_model:
|
37 |
+
is_llama_derived_model:
|
38 |
+
is_qwen_derived_model:
|
39 |
+
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
40 |
+
is_mistral_derived_model:
|
41 |
+
|
42 |
+
# optional overrides to the base model configuration
|
43 |
+
overrides_of_model_config:
|
44 |
+
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
|
45 |
+
rope_scaling:
|
46 |
+
type: # linear | dynamic
|
47 |
+
factor: # float
|
48 |
+
|
49 |
+
# optional overrides to the bnb 4bit quantization configuration
|
50 |
+
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
|
51 |
+
bnb_config_kwargs:
|
52 |
+
# These are default values
|
53 |
+
llm_int8_has_fp16_weight: false
|
54 |
+
bnb_4bit_quant_type: nf4
|
55 |
+
bnb_4bit_use_double_quant: true
|
56 |
+
|
57 |
+
|
58 |
+
# Whether you are training a 4-bit GPTQ quantized model
|
59 |
+
gptq: true
|
60 |
+
|
61 |
+
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
62 |
+
load_in_8bit: true
|
63 |
+
# Use bitsandbytes 4 bit
|
64 |
+
load_in_4bit:
|
65 |
+
|
66 |
+
# Use CUDA bf16
|
67 |
+
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
|
68 |
+
# Use CUDA fp16
|
69 |
+
fp16: true
|
70 |
+
# Use CUDA tf32
|
71 |
+
tf32: true # require >=ampere
|
72 |
+
|
73 |
+
# No AMP (automatic mixed precision)
|
74 |
+
bfloat16: true # require >=ampere
|
75 |
+
float16: true
|
76 |
+
|
77 |
+
# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
|
78 |
+
gpu_memory_limit: 20GiB
|
79 |
+
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
|
80 |
+
lora_on_cpu: true
|
81 |
+
|
82 |
+
# A list of one or more datasets to finetune the model with
|
83 |
+
datasets:
|
84 |
+
# HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
|
85 |
+
- path: vicgalle/alpaca-gpt4
|
86 |
+
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
87 |
+
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
|
88 |
+
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
|
89 |
+
data_files: # Optional[str] path to source data files
|
90 |
+
shards: # Optional[int] number of shards to split data into
|
91 |
+
name: # Optional[str] name of dataset configuration to load
|
92 |
+
train_on_split: train # Optional[str] name of dataset split to load from
|
93 |
+
|
94 |
+
# Optional[str] fastchat conversation type, only used with type: sharegpt
|
95 |
+
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
96 |
+
field_human: # Optional[str]. Human key to use for conversation.
|
97 |
+
field_model: # Optional[str]. Assistant key to use for conversation.
|
98 |
+
# Add additional keys from your dataset as input or output roles
|
99 |
+
roles:
|
100 |
+
input: # Optional[List[str]]. These will be masked based on train_on_input
|
101 |
+
output: # Optional[List[str]].
|
102 |
+
|
103 |
+
# Custom user instruction prompt
|
104 |
+
- path: repo
|
105 |
+
type:
|
106 |
+
# The below are defaults. only set what's needed if you use a different column name.
|
107 |
+
system_prompt: ""
|
108 |
+
system_format: "{system}"
|
109 |
+
field_system: system
|
110 |
+
field_instruction: instruction
|
111 |
+
field_input: input
|
112 |
+
field_output: output
|
113 |
+
|
114 |
+
# Customizable to be single line or multi-line
|
115 |
+
# Use {instruction}/{input} as key to be replaced
|
116 |
+
# 'format' can include {input}
|
117 |
+
format: |-
|
118 |
+
User: {instruction} {input}
|
119 |
+
Assistant:
|
120 |
+
# 'no_input_format' cannot include {input}
|
121 |
+
no_input_format: "{instruction} "
|
122 |
+
|
123 |
+
# For `completion` datsets only, uses the provided field instead of `text` column
|
124 |
+
field:
|
125 |
+
|
126 |
+
# If false, the datasets will not be shuffled and will keep their original order in `datasets`.
|
127 |
+
# The same applies to the `test_datasets` option and the `pretraining_dataset` option. Default is true.
|
128 |
+
shuffle_merged_datasets: true
|
129 |
+
|
130 |
+
# A list of one or more datasets to eval the model with.
|
131 |
+
# You can use either test_datasets, or val_set_size, but not both.
|
132 |
+
test_datasets:
|
133 |
+
- path: /workspace/data/eval.jsonl
|
134 |
+
ds_type: json
|
135 |
+
# You need to specify a split. For "json" datasets the default split is called "train".
|
136 |
+
split: train
|
137 |
+
type: completion
|
138 |
+
data_files:
|
139 |
+
- /workspace/data/eval.jsonl
|
140 |
+
|
141 |
+
# use RL training: 'dpo', 'ipo', 'kto_pair'
|
142 |
+
rl:
|
143 |
+
|
144 |
+
# Saves the desired chat template to the tokenizer_config.json for easier inferencing
|
145 |
+
# Currently supports chatml and inst (mistral/mixtral)
|
146 |
+
chat_template: chatml
|
147 |
+
# Changes the default system message
|
148 |
+
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
|
149 |
+
# Axolotl attempts to save the dataset as an arrow after packing the data together so
|
150 |
+
# subsequent training attempts load faster, relative path
|
151 |
+
dataset_prepared_path: data/last_run_prepared
|
152 |
+
# Push prepared dataset to hub
|
153 |
+
push_dataset_to_hub: # repo path
|
154 |
+
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
|
155 |
+
# if not set.
|
156 |
+
dataset_processes: # defaults to os.cpu_count() if not set
|
157 |
+
# Keep dataset in memory while preprocessing
|
158 |
+
# Only needed if cached dataset is taking too much storage
|
159 |
+
dataset_keep_in_memory:
|
160 |
+
# push checkpoints to hub
|
161 |
+
hub_model_id: # private repo path to push finetuned model
|
162 |
+
# how to push checkpoints to hub
|
163 |
+
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
|
164 |
+
hub_strategy:
|
165 |
+
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
|
166 |
+
# Required to be true when used in combination with `push_dataset_to_hub`
|
167 |
+
hf_use_auth_token: # boolean
|
168 |
+
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
|
169 |
+
val_set_size: 0.04
|
170 |
+
# Num shards for whole dataset
|
171 |
+
dataset_shard_num:
|
172 |
+
# Index of shard to use for whole dataset
|
173 |
+
dataset_shard_idx:
|
174 |
+
|
175 |
+
# The maximum length of an input to train with, this should typically be less than 2048
|
176 |
+
# as most models have a token/context limit of 2048
|
177 |
+
sequence_len: 2048
|
178 |
+
# Pad inputs so each step uses constant sized buffers
|
179 |
+
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
|
180 |
+
pad_to_sequence_len:
|
181 |
+
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
|
182 |
+
sample_packing:
|
183 |
+
# Set to 'false' if getting errors during eval with sample_packing on.
|
184 |
+
eval_sample_packing:
|
185 |
+
# You can set these packing optimizations AFTER starting a training at least once.
|
186 |
+
# The trainer will provide recommended values for these values.
|
187 |
+
sample_packing_eff_est:
|
188 |
+
total_num_tokens:
|
189 |
+
|
190 |
+
# Passed through to transformers when loading the model when launched without accelerate
|
191 |
+
# Use `sequential` when training w/ model parallelism to limit memory
|
192 |
+
device_map:
|
193 |
+
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
|
194 |
+
max_memory:
|
195 |
+
|
196 |
+
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
|
197 |
+
adapter: lora
|
198 |
+
# If you already have a lora model trained that you want to load, put that here.
|
199 |
+
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
|
200 |
+
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
|
201 |
+
lora_model_dir:
|
202 |
+
|
203 |
+
# LoRA hyperparameters
|
204 |
+
# For more details about the following options, see:
|
205 |
+
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
|
206 |
+
lora_r: 8
|
207 |
+
lora_alpha: 16
|
208 |
+
lora_dropout: 0.05
|
209 |
+
lora_target_modules:
|
210 |
+
- q_proj
|
211 |
+
- v_proj
|
212 |
+
# - k_proj
|
213 |
+
# - o_proj
|
214 |
+
# - gate_proj
|
215 |
+
# - down_proj
|
216 |
+
# - up_proj
|
217 |
+
lora_target_linear: # If true, will target all linear modules
|
218 |
+
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers
|
219 |
+
|
220 |
+
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
|
221 |
+
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
|
222 |
+
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
|
223 |
+
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
|
224 |
+
lora_modules_to_save:
|
225 |
+
# - embed_tokens
|
226 |
+
# - lm_head
|
227 |
+
|
228 |
+
lora_fan_in_fan_out: false
|
229 |
+
|
230 |
+
# LoRA+ hyperparameters
|
231 |
+
# For more details about the following options, see:
|
232 |
+
# https://arxiv.org/abs/2402.12354 and `src/axolotl/core/train_builder.py`
|
233 |
+
loraplus_lr_ratio: # loraplus learning rate ratio lr_B / lr_A. Recommended value is 2^4.
|
234 |
+
loraplus_lr_embedding: # loraplus learning rate for lora embedding layers. Default value is 1e-6.
|
235 |
+
|
236 |
+
peft:
|
237 |
+
# Configuration options for loftq initialization for LoRA
|
238 |
+
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
|
239 |
+
loftq_config:
|
240 |
+
loftq_bits: # typically 4 bits
|
241 |
+
|
242 |
+
# ReLoRA configuration
|
243 |
+
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
244 |
+
relora_steps: # Number of steps per ReLoRA restart
|
245 |
+
relora_warmup_steps: # Number of per-restart warmup steps
|
246 |
+
relora_anneal_steps: # Number of anneal steps for each relora cycle
|
247 |
+
relora_prune_ratio: # threshold for optimizer magnitude when pruning
|
248 |
+
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
249 |
+
|
250 |
+
# wandb configuration if you're using it
|
251 |
+
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
252 |
+
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
253 |
+
wandb_project: # Your wandb project name
|
254 |
+
wandb_entity: # A wandb Team name if using a Team
|
255 |
+
wandb_watch:
|
256 |
+
wandb_name: # Set the name of your wandb run
|
257 |
+
wandb_run_id: # Set the ID of your wandb run
|
258 |
+
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
259 |
+
|
260 |
+
# mlflow configuration if you're using it
|
261 |
+
mlflow_tracking_uri: # URI to mlflow
|
262 |
+
mlflow_experiment_name: # Your experiment name
|
263 |
+
hf_mlflow_log_artifacts: # set to true to copy each saved checkpoint on each save to mlflow artifact registry
|
264 |
+
|
265 |
+
# Where to save the full-finetuned model to
|
266 |
+
output_dir: ./completed-model
|
267 |
+
|
268 |
+
# Whether to use torch.compile and which backend to use
|
269 |
+
torch_compile: # bool
|
270 |
+
torch_compile_backend: # Optional[str]
|
271 |
+
|
272 |
+
# Training hyperparameters
|
273 |
+
|
274 |
+
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
|
275 |
+
gradient_accumulation_steps: 1
|
276 |
+
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
|
277 |
+
# Batch size per gpu = micro_batch_size * gradient_accumulation_steps
|
278 |
+
micro_batch_size: 2
|
279 |
+
eval_batch_size:
|
280 |
+
num_epochs: 4
|
281 |
+
warmup_steps: 100 # cannot use with warmup_ratio
|
282 |
+
warmup_ratio: 0.05 # cannot use with warmup_steps
|
283 |
+
learning_rate: 0.00003
|
284 |
+
lr_quadratic_warmup:
|
285 |
+
logging_steps:
|
286 |
+
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
|
287 |
+
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
|
288 |
+
save_strategy: # Set to `no` to skip checkpoint saves
|
289 |
+
save_steps: # Leave empty to save at each epoch
|
290 |
+
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
|
291 |
+
save_total_limit: # Checkpoints saved at a time
|
292 |
+
# Maximum number of iterations to train for. It precedes num_epochs which means that
|
293 |
+
# if both are set, num_epochs will not be guaranteed.
|
294 |
+
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
|
295 |
+
max_steps:
|
296 |
+
|
297 |
+
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
|
298 |
+
eval_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
|
299 |
+
eval_causal_lm_metrics: # HF evaluate metrics used during evaluation. Default is ["sacrebleu", "comet", "ter", chrf]
|
300 |
+
|
301 |
+
loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
|
302 |
+
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)
|
303 |
+
|
304 |
+
# Save model as safetensors (require safetensors package)
|
305 |
+
save_safetensors:
|
306 |
+
|
307 |
+
# Whether to mask out or include the human's prompt from the training labels
|
308 |
+
train_on_inputs: false
|
309 |
+
# Group similarly sized data to minimize padding.
|
310 |
+
# May be slower to start, as it must download and sort the entire dataset.
|
311 |
+
# Note that training loss may have an oscillating pattern with this enabled.
|
312 |
+
group_by_length: false
|
313 |
+
|
314 |
+
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
|
315 |
+
gradient_checkpointing: false
|
316 |
+
# additional kwargs to pass to the trainer for gradient checkpointing
|
317 |
+
# gradient_checkpointing_kwargs:
|
318 |
+
# use_reentrant: true
|
319 |
+
|
320 |
+
# Stop training after this many evaluation losses have increased in a row
|
321 |
+
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
322 |
+
early_stopping_patience: 3
|
323 |
+
|
324 |
+
# Specify a scheduler and kwargs to use with the optimizer
|
325 |
+
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
|
326 |
+
lr_scheduler_kwargs:
|
327 |
+
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
|
328 |
+
cosine_constant_lr_ratio: # freeze lr at some percentage of the step, e.g. cosine_constant_lr_ratio=0.8 means start cosine_min_lr at 80% of training step (https://arxiv.org/pdf/2308.04014.pdf)
|
329 |
+
|
330 |
+
# For one_cycle optim
|
331 |
+
lr_div_factor: # Learning rate div factor
|
332 |
+
|
333 |
+
# Specify optimizer
|
334 |
+
# Valid values are driven by the Transformers OptimizerNames class, see:
|
335 |
+
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
|
336 |
+
#
|
337 |
+
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
|
338 |
+
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
|
339 |
+
# in the examples/ for your model and fine-tuning use case.
|
340 |
+
#
|
341 |
+
# Valid values for 'optimizer' include:
|
342 |
+
# - adamw_hf
|
343 |
+
# - adamw_torch
|
344 |
+
# - adamw_torch_fused
|
345 |
+
# - adamw_torch_xla
|
346 |
+
# - adamw_apex_fused
|
347 |
+
# - adafactor
|
348 |
+
# - adamw_anyprecision
|
349 |
+
# - sgd
|
350 |
+
# - adagrad
|
351 |
+
# - adamw_bnb_8bit
|
352 |
+
# - lion_8bit
|
353 |
+
# - lion_32bit
|
354 |
+
# - paged_adamw_32bit
|
355 |
+
# - paged_adamw_8bit
|
356 |
+
# - paged_lion_32bit
|
357 |
+
# - paged_lion_8bit
|
358 |
+
# - galore_adamw
|
359 |
+
# - galore_adamw_8bit
|
360 |
+
# - galore_adafactor
|
361 |
+
# - galore_adamw_layerwise
|
362 |
+
# - galore_adamw_8bit_layerwise
|
363 |
+
# - galore_adafactor_layerwise
|
364 |
+
optimizer:
|
365 |
+
# Dictionary of arguments to pass to the optimizer
|
366 |
+
optim_args:
|
367 |
+
# For Galore Optimizers the following optim_args are available
|
368 |
+
# rank: # type: int
|
369 |
+
# update_proj_gap # type: int
|
370 |
+
# scale # type: float
|
371 |
+
# proj_type: # type: str, default = std
|
372 |
+
|
373 |
+
# The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm
|
374 |
+
optim_target_modules:
|
375 |
+
# - self_attn # for llama
|
376 |
+
# - mlp
|
377 |
+
|
378 |
+
# Specify weight decay
|
379 |
+
weight_decay:
|
380 |
+
# adamw hyperparams
|
381 |
+
adam_beta1:
|
382 |
+
adam_beta2:
|
383 |
+
adam_epsilon:
|
384 |
+
# Gradient clipping max norm
|
385 |
+
max_grad_norm:
|
386 |
+
|
387 |
+
# Augmentation techniques
|
388 |
+
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
|
389 |
+
# currently only supported on Llama and Mistral
|
390 |
+
neftune_noise_alpha:
|
391 |
+
|
392 |
+
# Whether to bettertransformers
|
393 |
+
flash_optimum:
|
394 |
+
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
395 |
+
xformers_attention:
|
396 |
+
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
|
397 |
+
flash_attention:
|
398 |
+
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
|
399 |
+
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
|
400 |
+
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
|
401 |
+
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
|
402 |
+
# Whether to use scaled-dot-product attention
|
403 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
404 |
+
sdp_attention:
|
405 |
+
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
|
406 |
+
s2_attention:
|
407 |
+
# Resume from a specific checkpoint dir
|
408 |
+
resume_from_checkpoint:
|
409 |
+
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
|
410 |
+
# Be careful with this being turned on between different models.
|
411 |
+
auto_resume_from_checkpoints: false
|
412 |
+
|
413 |
+
# Don't mess with this, it's here for accelerate and torchrun
|
414 |
+
local_rank:
|
415 |
+
|
416 |
+
# Add or change special tokens.
|
417 |
+
# If you add tokens here, you don't need to add them to the `tokens` list.
|
418 |
+
special_tokens:
|
419 |
+
# bos_token: "<s>"
|
420 |
+
# eos_token: "</s>"
|
421 |
+
# unk_token: "<unk>"
|
422 |
+
# pad_token: "[PAD]"
|
423 |
+
|
424 |
+
# Add extra tokens.
|
425 |
+
tokens:
|
426 |
+
|
427 |
+
# FSDP
|
428 |
+
fsdp:
|
429 |
+
fsdp_config:
|
430 |
+
|
431 |
+
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
|
432 |
+
deepspeed:
|
433 |
+
|
434 |
+
# Advanced DDP Arguments
|
435 |
+
ddp_timeout:
|
436 |
+
ddp_bucket_cap_mb:
|
437 |
+
ddp_broadcast_buffers:
|
438 |
+
|
439 |
+
# Path to torch distx for optim 'adamw_anyprecision'
|
440 |
+
torchdistx_path:
|
441 |
+
|
442 |
+
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
|
443 |
+
pretraining_dataset:
|
444 |
+
|
445 |
+
# Debug mode
|
446 |
+
debug:
|
447 |
+
|
448 |
+
# Seed
|
449 |
+
seed:
|
450 |
+
|
451 |
+
# Allow overwrite yml config using from cli
|
452 |
+
strict:
|
453 |
+
```
|
docs/dataset-formats/conversation.qmd
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Conversation
|
3 |
+
description: Conversation format for supervised fine-tuning.
|
4 |
+
order: 3
|
5 |
+
---
|
6 |
+
|
7 |
+
## sharegpt
|
8 |
+
|
9 |
+
conversations where `from` is `human`/`gpt`. (optional: first row with role `system` to override default system prompt)
|
10 |
+
|
11 |
+
```{.json filename="data.jsonl"}
|
12 |
+
{"conversations": [{"from": "...", "value": "..."}]}
|
13 |
+
```
|
14 |
+
|
15 |
+
Note: `type: sharegpt` opens special configs:
|
16 |
+
- `conversation`: enables conversions to many Conversation types. Refer to the 'name' [here](https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py) for options.
|
17 |
+
- `roles`: allows you to specify the roles for input and output. This is useful for datasets with custom roles such as `tool` etc to support masking.
|
18 |
+
- `field_human`: specify the key to use instead of `human` in the conversation.
|
19 |
+
- `field_model`: specify the key to use instead of `gpt` in the conversation.
|
20 |
+
|
21 |
+
```yaml
|
22 |
+
datasets:
|
23 |
+
path: ...
|
24 |
+
type: sharegpt
|
25 |
+
|
26 |
+
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
27 |
+
field_human: # Optional[str]. Human key to use for conversation.
|
28 |
+
field_model: # Optional[str]. Assistant key to use for conversation.
|
29 |
+
# Add additional keys from your dataset as input or output roles
|
30 |
+
roles:
|
31 |
+
input: # Optional[List[str]]. These will be masked based on train_on_input
|
32 |
+
output: # Optional[List[str]].
|
33 |
+
```
|
34 |
+
|
35 |
+
## pygmalion
|
36 |
+
|
37 |
+
```{.json filename="data.jsonl"}
|
38 |
+
{"conversations": [{"role": "...", "value": "..."}]}
|
39 |
+
```
|
40 |
+
|
41 |
+
## sharegpt.load_role
|
42 |
+
|
43 |
+
conversations where `role` is used instead of `from`
|
44 |
+
|
45 |
+
```{.json filename="data.jsonl"}
|
46 |
+
{"conversations": [{"role": "...", "value": "..."}]}
|
47 |
+
```
|
48 |
+
|
49 |
+
## sharegpt.load_guanaco
|
50 |
+
|
51 |
+
conversations where `from` is `prompter` `assistant` instead of default sharegpt
|
52 |
+
|
53 |
+
```{.json filename="data.jsonl"}
|
54 |
+
{"conversations": [{"from": "...", "value": "..."}]}
|
55 |
+
```
|
56 |
+
|
57 |
+
## sharegpt_jokes
|
58 |
+
|
59 |
+
creates a chat where bot is asked to tell a joke, then explain why the joke is funny
|
60 |
+
|
61 |
+
```{.json filename="data.jsonl"}
|
62 |
+
{"conversations": [{"title": "...", "text": "...", "explanation": "..."}]}
|
63 |
+
```
|
docs/dataset-formats/index.qmd
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Dataset Formats
|
3 |
+
description: Supported dataset formats.
|
4 |
+
listing:
|
5 |
+
fields: [title, description]
|
6 |
+
type: table
|
7 |
+
sort-ui: false
|
8 |
+
filter-ui: false
|
9 |
+
max-description-length: 250
|
10 |
+
---
|
11 |
+
|
12 |
+
Axolotl supports a variety of dataset formats. It is recommended to use a JSONL format. The schema of the JSONL depends upon the task and the prompt template you wish to use. Instead of a JSONL, you can also use a HuggingFace dataset with columns for each JSONL field.
|
13 |
+
|
14 |
+
Below are these various formats organized by task:
|
docs/dataset-formats/inst_tune.qmd
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Instruction Tuning
|
3 |
+
description: Instruction tuning formats for supervised fine-tuning.
|
4 |
+
order: 2
|
5 |
+
---
|
6 |
+
|
7 |
+
## alpaca
|
8 |
+
|
9 |
+
instruction; input(optional)
|
10 |
+
|
11 |
+
```{.json filename="data.jsonl"}
|
12 |
+
{"instruction": "...", "input": "...", "output": "..."}
|
13 |
+
```
|
14 |
+
|
15 |
+
## jeopardy
|
16 |
+
|
17 |
+
question and answer
|
18 |
+
|
19 |
+
```{.json filename="data.jsonl"}
|
20 |
+
{"question": "...", "category": "...", "answer": "..."}
|
21 |
+
```
|
22 |
+
|
23 |
+
## oasst
|
24 |
+
|
25 |
+
instruction
|
26 |
+
|
27 |
+
```{.json filename="data.jsonl"}
|
28 |
+
{"INSTRUCTION": "...", "RESPONSE": "..."}
|
29 |
+
```
|
30 |
+
|
31 |
+
## gpteacher
|
32 |
+
|
33 |
+
instruction; input(optional)
|
34 |
+
|
35 |
+
```{.json filename="data.jsonl"}
|
36 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
37 |
+
```
|
38 |
+
|
39 |
+
## reflection
|
40 |
+
|
41 |
+
instruction with reflect; input(optional)
|
42 |
+
|
43 |
+
```{.json filename="data.jsonl"}
|
44 |
+
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
|
45 |
+
```
|
46 |
+
|
47 |
+
## explainchoice
|
48 |
+
|
49 |
+
question, choices, (solution OR explanation)
|
50 |
+
|
51 |
+
```{.json filename="data.jsonl"}
|
52 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
53 |
+
```
|
54 |
+
|
55 |
+
## concisechoice
|
56 |
+
|
57 |
+
question, choices, (solution OR explanation)
|
58 |
+
|
59 |
+
```{.json filename="data.jsonl"}
|
60 |
+
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
|
61 |
+
```
|
62 |
+
|
63 |
+
## summarizetldr
|
64 |
+
|
65 |
+
article and summary
|
66 |
+
|
67 |
+
```{.json filename="data.jsonl"}
|
68 |
+
{"article": "...", "summary": "..."}
|
69 |
+
```
|
70 |
+
|
71 |
+
## alpaca_chat
|
72 |
+
|
73 |
+
basic instruct for alpaca chat
|
74 |
+
|
75 |
+
```{.json filename="data.jsonl"}
|
76 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
77 |
+
```
|
78 |
+
|
79 |
+
## alpaca_chat.load_qa
|
80 |
+
|
81 |
+
question and answer for alpaca chat
|
82 |
+
|
83 |
+
```{.json filename="data.jsonl"}
|
84 |
+
{"question": "...", "answer": "..."}
|
85 |
+
```
|
86 |
+
|
87 |
+
## alpaca_chat.load_concise
|
88 |
+
|
89 |
+
question and answer for alpaca chat, for concise answers
|
90 |
+
|
91 |
+
```{.json filename="data.jsonl"}
|
92 |
+
{"instruction": "...", "input": "...", "response": "..."}
|
93 |
+
```
|
94 |
+
|
95 |
+
## alpaca_chat.load_camel_ai
|
96 |
+
|
97 |
+
question and answer for alpaca chat, for load_camel_ai
|
98 |
+
|
99 |
+
```{.json filename="data.jsonl"}
|
100 |
+
{"message_1": "...", "message_2": "..."}
|
101 |
+
```
|
102 |
+
|
103 |
+
## alpaca_w_system.load_open_orca
|
104 |
+
|
105 |
+
support for open orca datasets with included system prompts, instruct
|
106 |
+
|
107 |
+
```{.json filename="data.jsonl"}
|
108 |
+
{"system_prompt": "...", "question": "...", "response": "..."}
|
109 |
+
```
|
110 |
+
|
111 |
+
## context_qa
|
112 |
+
|
113 |
+
in context question answering from an article
|
114 |
+
|
115 |
+
```{.json filename="data.jsonl"}
|
116 |
+
{"article": "...", "question": "...", "answer": "..."}
|
117 |
+
```
|
118 |
+
|
119 |
+
## context_qa.load_v2
|
120 |
+
|
121 |
+
in context question answering (alternate)
|
122 |
+
|
123 |
+
```{.json filename="data.jsonl"}
|
124 |
+
{"context": "...", "question": "...", "answer": "..."}
|
125 |
+
```
|
126 |
+
|
127 |
+
## context_qa.load_404
|
128 |
+
|
129 |
+
in context question answering from an article, with default response for no answer from context
|
130 |
+
|
131 |
+
```{.json filename="data.jsonl"}
|
132 |
+
{"article": "...", "unanswerable_question": "..."}
|
133 |
+
```
|
134 |
+
|
135 |
+
## creative_acr.load_answer
|
136 |
+
|
137 |
+
instruction and revision
|
138 |
+
|
139 |
+
```{.json filename="data.jsonl"}
|
140 |
+
{"instruction": "...", "revision": "..."}
|
141 |
+
```
|
142 |
+
|
143 |
+
## creative_acr.load_critique
|
144 |
+
|
145 |
+
critique
|
146 |
+
|
147 |
+
```{.json filename="data.jsonl"}
|
148 |
+
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "..."}
|
149 |
+
```
|
150 |
+
|
151 |
+
## creative_acr.load_revise
|
152 |
+
|
153 |
+
critique and revise
|
154 |
+
|
155 |
+
```{.json filename="data.jsonl"}
|
156 |
+
{"scores": "...", "critiques": "...", "instruction": "...", "answer": "...", "revision": "..."}
|
157 |
+
```
|
158 |
+
|
159 |
+
## metharme
|
160 |
+
|
161 |
+
instruction, adds additional eos tokens
|
162 |
+
|
163 |
+
```{.json filename="data.jsonl"}
|
164 |
+
{"prompt": "...", "generation": "..."}
|
165 |
+
```
|
166 |
+
|
167 |
+
## How to add custom prompt format
|
168 |
+
|
169 |
+
For a dataset that is preprocessed for instruction purposes:
|
170 |
+
|
171 |
+
```{.json filename="data.jsonl"}
|
172 |
+
{"input": "...", "output": "..."}
|
173 |
+
```
|
174 |
+
|
175 |
+
You can use this example in your YAML config:
|
176 |
+
|
177 |
+
```{.yaml filename="config.yaml"}
|
178 |
+
datasets:
|
179 |
+
- path: repo
|
180 |
+
type:
|
181 |
+
system_prompt: ""
|
182 |
+
field_system: system
|
183 |
+
field_instruction: input
|
184 |
+
field_output: output
|
185 |
+
format: "[INST] {instruction} [/INST]"
|
186 |
+
no_input_format: "[INST] {instruction} [/INST]"
|
187 |
+
```
|
188 |
+
|
189 |
+
See full config options under [here](../config.qmd).
|
docs/dataset-formats/pretraining.qmd
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Pre-training
|
3 |
+
description: Data format for a pre-training completion task.
|
4 |
+
order: 1
|
5 |
+
---
|
6 |
+
|
7 |
+
For pretraining, there is no prompt template or roles. The only required field is `text`:
|
8 |
+
|
9 |
+
```{.json filename="data.jsonl"}
|
10 |
+
{"text": "first row"}
|
11 |
+
{"text": "second row"}
|
12 |
+
...
|
13 |
+
```
|
14 |
+
|
15 |
+
:::{.callout-note}
|
16 |
+
|
17 |
+
### Streaming is recommended for large datasets
|
18 |
+
|
19 |
+
Axolotl usually loads the entire dataset into memory. This will be challenging for large datasets. Use the following config to enable streaming:
|
20 |
+
|
21 |
+
```{.yaml filename="config.yaml"}
|
22 |
+
pretraining_dataset: # hf path only
|
23 |
+
...
|
24 |
+
```
|
25 |
+
|
26 |
+
:::
|
docs/dataset-formats/template_free.qmd
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Template-Free
|
3 |
+
description: Construct prompts without a template.
|
4 |
+
order: 4
|
5 |
+
---
|
6 |
+
|
7 |
+
See [these docs](../input_output.qmd).
|
docs/dataset-formats/tokenized.qmd
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Custom Pre-Tokenized Dataset
|
3 |
+
description: How to use a custom pre-tokenized dataset.
|
4 |
+
order: 5
|
5 |
+
---
|
6 |
+
|
7 |
+
- Do not pass a `type:` in your axolotl config.
|
8 |
+
- Columns in Dataset must be exactly `input_ids`, `attention_mask`, `labels`
|
9 |
+
|
10 |
+
```{.yaml filename="config.yml"}
|
11 |
+
- path: ...
|
12 |
+
```
|
docs/dataset_preprocessing.qmd
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Dataset Preprocessing
|
3 |
+
description: How datasets are processed
|
4 |
+
---
|
5 |
+
|
6 |
+
Dataset pre-processing is the step where Axolotl takes each dataset you've configured alongside
|
7 |
+
the (dataset format)[../dataset-formats/] and prompt strategies to:
|
8 |
+
- parse the dataset based on the *dataset format*
|
9 |
+
- transform the dataset to how you would interact with the model based on the *prompt strategy*
|
10 |
+
- tokenize the dataset based on the configured model & tokenizer
|
11 |
+
- shuffle and merge multiple datasets together if using more than one
|
12 |
+
|
13 |
+
The processing of the datasets can happen one of two ways:
|
14 |
+
|
15 |
+
1. Before kicking off training by calling `python -m axolotl.cli.preprocess /path/to/your.yaml --debug`
|
16 |
+
2. When training is started
|
17 |
+
|
18 |
+
What are the benefits of pre-processing? When training interactively or for sweeps
|
19 |
+
(e.g. you are restarting the trainer often), processing the datasets can oftentimes be frustratingly
|
20 |
+
slow. Pre-processing will cache the tokenized/formatted datasets according to a hash of dependent
|
21 |
+
training parameters so that it will intelligently pull from its cache when possible.
|
22 |
+
|
23 |
+
The path of the cache is controlled by `dataset_prepared_path:` and is often left blank in example
|
24 |
+
YAMLs as this leads to a more robust solution that prevents unexpectedly reusing cached data.
|
25 |
+
|
26 |
+
If `dataset_prepared_path:` is left empty, when training, the processed dataset will be cached in a
|
27 |
+
default path of `./last_run_prepared/`, but will ignore anything already cached there. By explicitly
|
28 |
+
setting `dataset_prepared_path: ./last_run_prepared`, the trainer will use whatever pre-processed
|
29 |
+
data is in the cache.
|
30 |
+
|
31 |
+
What are the edge cases? Let's say you are writing a custom prompt strategy or using a user-defined
|
32 |
+
prompt template. Because the trainer cannot readily detect these changes, we cannot change the
|
33 |
+
calculated hash value for the pre-processed dataset. If you have `dataset_prepared_path: ...` set
|
34 |
+
and change your prompt templating logic, it may not pick up the changes you made and you will be
|
35 |
+
training over the old prompt.
|
docs/debugging.qmd
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Debugging
|
3 |
+
description: How to debug Axolotl
|
4 |
+
---
|
5 |
+
|
6 |
+
|
7 |
+
This document provides some tips and tricks for debugging Axolotl. It also provides an example configuration for debugging with VSCode. A good debugging setup is essential to understanding how Axolotl code works behind the scenes.
|
8 |
+
|
9 |
+
## Table of Contents
|
10 |
+
|
11 |
+
- [General Tips](#general-tips)
|
12 |
+
- [Debugging with VSCode](#debugging-with-vscode)
|
13 |
+
- [Background](#background)
|
14 |
+
- [Configuration](#configuration)
|
15 |
+
- [Customizing your debugger](#customizing-your-debugger)
|
16 |
+
- [Video Tutorial](#video-tutorial)
|
17 |
+
- [Debugging With Docker](#debugging-with-docker)
|
18 |
+
- [Setup](#setup)
|
19 |
+
- [Attach To Container](#attach-to-container)
|
20 |
+
- [Video - Attaching To Docker On Remote Host](#video---attaching-to-docker-on-remote-host)
|
21 |
+
|
22 |
+
## General Tips
|
23 |
+
|
24 |
+
While debugging it's helpful to simplify your test scenario as much as possible. Here are some tips for doing so:
|
25 |
+
|
26 |
+
> [!Important]
|
27 |
+
> All of these tips are incorporated into the [example configuration](#configuration) for debugging with VSCode below.
|
28 |
+
|
29 |
+
1. **Make sure you are using the latest version of axolotl**: This project changes often and bugs get fixed fast. Check your git branch and make sure you have pulled the latest changes from `main`.
|
30 |
+
1. **Eliminate concurrency**: Restrict the number of processes to 1 for both training and data preprocessing:
|
31 |
+
- Set `CUDA_VISIBLE_DEVICES` to a single GPU, ex: `export CUDA_VISIBLE_DEVICES=0`.
|
32 |
+
- Set `dataset_processes: 1` in your axolotl config or run the training command with `--dataset_processes=1`.
|
33 |
+
2. **Use a small dataset**: Construct or use a small dataset from HF Hub. When using a small dataset, you will often have to make sure `sample_packing: False` and `eval_sample_packing: False` to avoid errors. If you are in a pinch and don't have time to construct a small dataset but want to use from the HF Hub, you can shard the data (this will still tokenize the entire dataset, but will only use a fraction of the data for training. For example, to shard the dataset into 20 pieces, add the following to your axolotl config):
|
34 |
+
```yaml
|
35 |
+
dataset:
|
36 |
+
...
|
37 |
+
shards: 20
|
38 |
+
```
|
39 |
+
3. **Use a small model**: A good example of a small model is [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0).
|
40 |
+
4. **Minimize iteration time**: Make sure the training loop finishes as fast as possible, with these settings.
|
41 |
+
- `micro_batch_size: 1`
|
42 |
+
- `max_steps: 1`
|
43 |
+
- `val_set_size: 0`
|
44 |
+
5. **Clear Caches:** Axolotl caches certain steps and so does the underlying HuggingFace trainer. You may want to clear some of these caches when debugging.
|
45 |
+
- Data preprocessing: When debugging data preprocessing, which includes prompt template formation, you may want to delete the directory set in `dataset_prepared_path:` in your axolotl config. If you didn't set this value, the default is `last_run_prepared`.
|
46 |
+
- HF Hub: If you are debugging data preprocessing, you should clear the relevant HF cache [HuggingFace cache](https://huggingface.co/docs/datasets/cache), by deleting the appropriate `~/.cache/huggingface/datasets/...` folder(s).
|
47 |
+
- **The recommended approach is to redirect all outputs and caches to a temporary folder and delete selected subfolders before each run. This is demonstrated in the example configuration below.**
|
48 |
+
|
49 |
+
|
50 |
+
## Debugging with VSCode
|
51 |
+
|
52 |
+
### Background
|
53 |
+
|
54 |
+
The below example shows how to configure VSCode to debug data preprocessing of the `sharegpt` format. This is the format used when you have the following in your axolotl config:
|
55 |
+
|
56 |
+
```yaml
|
57 |
+
datasets:
|
58 |
+
- path: <path to your sharegpt formatted dataset> # example on HF Hub: philschmid/guanaco-sharegpt-style
|
59 |
+
type: sharegpt
|
60 |
+
```
|
61 |
+
|
62 |
+
>[!Important]
|
63 |
+
> If you are already familiar with advanced VSCode debugging, you can skip the below explanation and look at the files [.vscode/launch.json](../.vscode/launch.json) and [.vscode/tasks.json](../.vscode/tasks.json) for an example configuration.
|
64 |
+
|
65 |
+
>[!Tip]
|
66 |
+
> If you prefer to watch a video, rather than read, you can skip to the [video tutorial](#video-tutorial) below (but doing both is recommended).
|
67 |
+
|
68 |
+
### Setup
|
69 |
+
|
70 |
+
Make sure you have an [editable install](https://setuptools.pypa.io/en/latest/userguide/development_mode.html) of Axolotl, which ensures that changes you make to the code are reflected at runtime. Run the following commands from the root of this project:
|
71 |
+
|
72 |
+
```bash
|
73 |
+
pip3 install packaging
|
74 |
+
pip3 install -e '.[flash-attn,deepspeed]'
|
75 |
+
```
|
76 |
+
|
77 |
+
#### Remote Hosts
|
78 |
+
|
79 |
+
If you developing on a remote host, you can easily use VSCode to debug remotely. To do so, you will need to follow this [remote - SSH guide](https://code.visualstudio.com/docs/remote/ssh). You can also see the video below on [Docker and Remote SSH debugging](#video---attaching-to-docker-on-remote-host).
|
80 |
+
|
81 |
+
|
82 |
+
### Configuration
|
83 |
+
|
84 |
+
The easiest way to get started is to modify the [.vscode/launch.json](../.vscode/launch.json) file in this project. This is just an example configuration, so you may need to modify or copy it to suit your needs.
|
85 |
+
|
86 |
+
For example, to mimic the command `cd devtools && CUDA_VISIBLE_DEVICES=0 accelerate launch -m axolotl.cli.train dev_sharegpt.yml`, you would use the below configuration[^1]. Note that we add additional flags that override the axolotl config and incorporate the tips above (see the comments). We also set the working directory to `devtools` and set the `env` variable `HF_HOME` to a temporary folder that is later partially deleted. This is because we want to delete the HF dataset cache before each run in order to ensure that the data preprocessing code is run from scratch.
|
87 |
+
|
88 |
+
```jsonc
|
89 |
+
// .vscode/launch.json
|
90 |
+
{
|
91 |
+
"version": "0.2.0",
|
92 |
+
"configurations": [
|
93 |
+
{
|
94 |
+
"name": "Debug axolotl prompt - sharegpt",
|
95 |
+
"type": "python",
|
96 |
+
"module": "accelerate.commands.launch",
|
97 |
+
"request": "launch",
|
98 |
+
"args": [
|
99 |
+
"-m", "axolotl.cli.train", "dev_sharegpt.yml",
|
100 |
+
// The flags below simplify debugging by overriding the axolotl config
|
101 |
+
// with the debugging tips above. Modify as needed.
|
102 |
+
"--dataset_processes=1", // limits data preprocessing to one process
|
103 |
+
"--max_steps=1", // limits training to just one step
|
104 |
+
"--batch_size=1", // minimizes batch size
|
105 |
+
"--micro_batch_size=1", // minimizes batch size
|
106 |
+
"--val_set_size=0", // disables validation
|
107 |
+
"--sample_packing=False", // disables sample packing which is necessary for small datasets
|
108 |
+
"--eval_sample_packing=False",// disables sample packing on eval set
|
109 |
+
"--dataset_prepared_path=temp_debug/axolotl_outputs/data", // send data outputs to a temp folder
|
110 |
+
"--output_dir=temp_debug/axolotl_outputs/model" // send model outputs to a temp folder
|
111 |
+
],
|
112 |
+
"console": "integratedTerminal", // show output in the integrated terminal
|
113 |
+
"cwd": "${workspaceFolder}/devtools", // set working directory to devtools from the root of the project
|
114 |
+
"justMyCode": true, // step through only axolotl code
|
115 |
+
"env": {"CUDA_VISIBLE_DEVICES": "0", // Since we aren't doing distributed training, we need to limit to one GPU
|
116 |
+
"HF_HOME": "${workspaceFolder}/devtools/temp_debug/.hf-cache"}, // send HF cache to a temp folder
|
117 |
+
"preLaunchTask": "cleanup-for-dataprep", // delete temp folders (see below)
|
118 |
+
}
|
119 |
+
]
|
120 |
+
}
|
121 |
+
```
|
122 |
+
|
123 |
+
**Additional notes about this configuration:**
|
124 |
+
|
125 |
+
- The argument `justMyCode` is set to `true` such that you step through only the axolotl code. If you want to step into dependencies, set this to `false`.
|
126 |
+
- The `preLaunchTask`: `cleanup-for-dataprep` is defined in [.vscode/tasks.json](../.vscode/tasks.json) and is used to delete the following folders before debugging, which is essential to ensure that the data pre-processing code is run from scratch:
|
127 |
+
- `./devtools/temp_debug/axolotl_outputs`
|
128 |
+
- `./devtools/temp_debug/.hf-cache/datasets`
|
129 |
+
|
130 |
+
>[!Tip]
|
131 |
+
> You may not want to delete these folders. For example, if you are debugging model training instead of data pre-processing, you may NOT want to delete the cache or output folders. You may also need to add additional tasks to the `tasks.json` file depending on your use case.
|
132 |
+
|
133 |
+
Below is the [./vscode/tasks.json](../.vscode/tasks.json) file that defines the `cleanup-for-dataprep` task. This task is run before each debugging session when you use the above configuration. Note how there are two tasks that delete the two folders mentioned above. The third task `cleanup-for-dataprep` is a composite task that combines the two tasks. A composite task is necessary because VSCode does not allow you to specify multiple tasks in the `preLaunchTask` argument of the `launch.json` file.
|
134 |
+
|
135 |
+
```jsonc
|
136 |
+
// .vscode/tasks.json
|
137 |
+
// this file is used by launch.json
|
138 |
+
{
|
139 |
+
"version": "2.0.0",
|
140 |
+
"tasks": [
|
141 |
+
// this task changes into the devtools directory and deletes the temp_debug/axolotl_outputs folder
|
142 |
+
{
|
143 |
+
"label": "delete-outputs",
|
144 |
+
"type": "shell",
|
145 |
+
"command": "rm -rf temp_debug/axolotl_outputs",
|
146 |
+
"options":{ "cwd": "${workspaceFolder}/devtools"},
|
147 |
+
"problemMatcher": []
|
148 |
+
},
|
149 |
+
// this task changes into the devtools directory and deletes the `temp_debug/.hf-cache/datasets` folder
|
150 |
+
{
|
151 |
+
"label": "delete-temp-hf-dataset-cache",
|
152 |
+
"type": "shell",
|
153 |
+
"command": "rm -rf temp_debug/.hf-cache/datasets",
|
154 |
+
"options":{ "cwd": "${workspaceFolder}/devtools"},
|
155 |
+
"problemMatcher": []
|
156 |
+
},
|
157 |
+
// this task combines the two tasks above
|
158 |
+
{
|
159 |
+
"label": "cleanup-for-dataprep",
|
160 |
+
"dependsOn": ["delete-outputs", "delete-temp-hf-dataset-cache"],
|
161 |
+
}
|
162 |
+
]
|
163 |
+
}
|
164 |
+
```
|
165 |
+
|
166 |
+
### Customizing your debugger
|
167 |
+
|
168 |
+
Your debugging use case may differ from the example above. The easiest thing to do is to put your own axolotl config in the `devtools` folder and modify the `launch.json` file to use your config. You may also want to modify the `preLaunchTask` to delete different folders or not delete anything at all.
|
169 |
+
|
170 |
+
### Video Tutorial
|
171 |
+
|
172 |
+
The following video tutorial walks through the above configuration and demonstrates how to debug with VSCode, (click the image below to watch):
|
173 |
+
|
174 |
+
<div style="text-align: center; line-height: 0;">
|
175 |
+
|
176 |
+
<a href="https://youtu.be/xUUB11yeMmc" target="_blank"
|
177 |
+
title="How to debug Axolotl (for fine tuning LLMs)"><img
|
178 |
+
src="https://i.ytimg.com/vi/xUUB11yeMmc/maxresdefault.jpg"
|
179 |
+
style="border-radius: 10px; display: block; margin: auto;" width="560" height="315" /></a>
|
180 |
+
|
181 |
+
<figcaption style="font-size: smaller;"><a href="https://hamel.dev">Hamel Husain's</a> tutorial: <a href="https://www.youtube.com/watch?v=xUUB11yeMmc">Debugging Axolotl w/VSCode</a></figcaption>
|
182 |
+
|
183 |
+
</div>
|
184 |
+
<br>
|
185 |
+
|
186 |
+
## Debugging With Docker
|
187 |
+
|
188 |
+
Using [official Axolotl Docker images](https://hub.docker.com/r/winglian/axolotl/tags) is a great way to debug your code, and is a very popular way to use Axolotl. Attaching VSCode to Docker takes a few more steps.
|
189 |
+
|
190 |
+
### Setup
|
191 |
+
|
192 |
+
On the host that is running axolotl (ex: if you are using a remote host), clone the axolotl repo and change your current directory to the root:
|
193 |
+
|
194 |
+
```bash
|
195 |
+
git clone https://github.com/OpenAccess-AI-Collective/axolotl
|
196 |
+
cd axolotl
|
197 |
+
```
|
198 |
+
|
199 |
+
>[!Tip]
|
200 |
+
> If you already have axolotl cloned on your host, make sure you have the latest changes and change into the root of the project.
|
201 |
+
|
202 |
+
Next, run the desired docker image and mount the current directory. Below is a docker command you can run to do this:[^2]
|
203 |
+
|
204 |
+
```bash
|
205 |
+
docker run --privileged --gpus '"all"' --shm-size 10g --rm -it --name axolotl --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --mount type=bind,src="${PWD}",target=/workspace/axolotl -v ${HOME}/.cache/huggingface:/root/.cache/huggingface winglian/axolotl:main-py3.10-cu118-2.0.1
|
206 |
+
```
|
207 |
+
|
208 |
+
>[!Tip]
|
209 |
+
> To understand which containers are available, see the [Docker section of the README](../README.md#docker) and the [DockerHub repo](https://hub.docker.com/r/winglian/axolotl/tags). For details of how the Docker containers are built, see axolotl's [Docker CI builds](../.github/workflows/main.yml).
|
210 |
+
|
211 |
+
You will now be in the container. Next, perform an editable install of Axolotl:
|
212 |
+
|
213 |
+
```bash
|
214 |
+
pip3 install packaging
|
215 |
+
pip3 install -e '.[flash-attn,deepspeed]'
|
216 |
+
```
|
217 |
+
|
218 |
+
### Attach To Container
|
219 |
+
|
220 |
+
Next, if you are using a remote host, [Remote into this host with VSCode](https://code.visualstudio.com/docs/remote/ssh). If you are using a local host, you can skip this step.
|
221 |
+
|
222 |
+
Next, select `Dev Containers: Attach to Running Container...` using the command palette (`CMD + SHIFT + P`) in VSCode. You will be prompted to select a container to attach to. Select the container you just created. You will now be in the container with a working directory that is at the root of the project. Any changes you make to the code will be reflected both in the container and on the host.
|
223 |
+
|
224 |
+
Now you are ready to debug as described above (see [Debugging with VSCode](#debugging-with-vscode)).
|
225 |
+
|
226 |
+
### Video - Attaching To Docker On Remote Host
|
227 |
+
|
228 |
+
Here is a short video that demonstrates how to attach to a Docker container on a remote host:
|
229 |
+
|
230 |
+
<div style="text-align: center; line-height: 0;">
|
231 |
+
|
232 |
+
<a href="https://youtu.be/0AuoR7QnHR0" target="_blank"
|
233 |
+
title="Debugging Axolotl Part 2: Attaching to Docker on a Remote Host"><img
|
234 |
+
src="https://i.ytimg.com/vi/0AuoR7QnHR0/hqdefault.jpg"
|
235 |
+
style="border-radius: 10px; display: block; margin: auto;" width="560" height="315" /></a>
|
236 |
+
|
237 |
+
<figcaption style="font-size: smaller;"><a href="https://hamel.dev">Hamel Husain's</a> tutorial: <a href="https://youtu.be/0AuoR7QnHR0">Debugging Axolotl Part 2: Attaching to Docker on a Remote Host
|
238 |
+
</a></figcaption>
|
239 |
+
|
240 |
+
</div>
|
241 |
+
<br>
|
242 |
+
|
243 |
+
[^1]: The config actually mimics the command `CUDA_VISIBLE_DEVICES=0 python -m accelerate.commands.launch -m axolotl.cli.train devtools/sharegpt.yml`, but this is the same thing.
|
244 |
+
|
245 |
+
[^2]: Many of the below flags are recommended best practices by Nvidia when using nvidia-container-toolkit. You can read more about these flags [here](https://docs.nvidia.com/deeplearning/frameworks/user-guide/index.html).
|
docs/faq.qmd
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: FAQ
|
3 |
+
description: Frequently asked questions
|
4 |
+
---
|
5 |
+
|
6 |
+
|
7 |
+
**Q: The trainer stopped and hasn't progressed in several minutes.**
|
8 |
+
|
9 |
+
> A: Usually an issue with the GPUs communicating with each other. See the [NCCL doc](nccl.qmd)
|
10 |
+
|
11 |
+
**Q: Exitcode -9**
|
12 |
+
|
13 |
+
> A: This usually happens when you run out of system RAM.
|
14 |
+
|
15 |
+
**Q: Exitcode -7 while using deepspeed**
|
16 |
+
|
17 |
+
> A: Try upgrading deepspeed w: `pip install -U deepspeed`
|
18 |
+
|
19 |
+
**Q: AttributeError: 'DummyOptim' object has no attribute 'step'**
|
20 |
+
|
21 |
+
> A: You may be using deepspeed with single gpu. Please don't set `deepspeed:` in yaml or cli.
|
docs/fsdp_qlora.qmd
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: "FDSP + QLoRA"
|
3 |
+
description: Use FSDP with QLoRA to fine-tune large LLMs on consumer GPUs.
|
4 |
+
format:
|
5 |
+
html:
|
6 |
+
toc: true
|
7 |
+
---
|
8 |
+
|
9 |
+
## Background
|
10 |
+
|
11 |
+
Using FSDP with QLoRA is essential for **fine-tuning larger (70b+ parameter) LLMs on consumer GPUs.** For example, you can use FSDP + QLoRA to train a 70b model on two 24GB GPUs[^1].
|
12 |
+
|
13 |
+
Below, we describe how to use this feature in Axolotl.
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
To enable `QLoRA` with `FSDP`, you need to perform the following steps:
|
18 |
+
|
19 |
+
> ![Tip]
|
20 |
+
> See the [example config](#example-config) file in addition to reading these instructions.
|
21 |
+
|
22 |
+
1. Set `adapter: qlora` in your axolotl config file.
|
23 |
+
2. Enable FSDP in your axolotl config, as [described here](https://github.com/OpenAccess-AI-Collective/axolotl?tab=readme-ov-file#fsdp).
|
24 |
+
3. Use one of the supported model types: `llama`, `mistral` or `mixtral`.
|
25 |
+
|
26 |
+
## Example Config
|
27 |
+
|
28 |
+
[examples/llama-2/qlora-fsdp.yml](../examples/llama-2/qlora-fsdp.yml) contains an example of how to enable QLoRA + FSDP in axolotl.
|
29 |
+
|
30 |
+
## References
|
31 |
+
|
32 |
+
- [PR #1378](https://github.com/OpenAccess-AI-Collective/axolotl/pull/1378) enabling QLoRA in FSDP in Axolotl.
|
33 |
+
- [Blog Post](https://www.answer.ai/posts/2024-03-06-fsdp-qlora.html) from the [Answer.AI](https://www.answer.ai/) team describing the work that enabled QLoRA in FSDP.
|
34 |
+
- Related HuggingFace PRs Enabling FDSP + QLoRA:
|
35 |
+
- Accelerate [PR#2544](https://github.com/huggingface/accelerate/pull/2544 )
|
36 |
+
- Transformers [PR#29587](https://github.com/huggingface/transformers/pull/29587)
|
37 |
+
- TRL [PR#1416](https://github.com/huggingface/trl/pull/1416)
|
38 |
+
- PEFT [PR#1550](https://github.com/huggingface/peft/pull/1550)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
[^1]: This was enabled by [this work](https://www.answer.ai/posts/2024-03-06-fsdp-qlora.html) from the Answer.AI team.
|