Alignment-Lab-AI commited on
Commit
a13242c
·
verified ·
1 Parent(s): f85abe5

Upload tes13.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. tes13.py +261 -0
tes13.py ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ import json
5
+ import os
6
+ import multiprocessing as mp
7
+ from datasets import load_dataset
8
+ from snac import SNAC
9
+ from tqdm import tqdm
10
+ from collections import defaultdict
11
+ import logging
12
+ import traceback
13
+ import time
14
+ import queue
15
+ import torchaudio
16
+
17
+ # Set up logging
18
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
19
+
20
+ # Constants
21
+ SNAC_SAMPLE_RATE = 24000
22
+ OUTPUT_DIR = "processed_emilia"
23
+ ROWS_PER_SAVE = 1000
24
+ ROWS_PER_PUSH = 10000000
25
+ NUM_WORKERS = 64
26
+ BATCH_SIZE = 1000
27
+ STOP_AFTER = None
28
+ NUM_GPUS = torch.cuda.device_count()
29
+
30
+ # Worker stages
31
+ STAGES = [
32
+ "Initializing CUDA (Starting)",
33
+ "Initializing CUDA (Finished)",
34
+ "Loading SNAC model (Starting)",
35
+ "Loading SNAC model (Finished)",
36
+ "Loading dataset (Starting)",
37
+ "Loading dataset (Finished)",
38
+ "Resolving data files (Starting)",
39
+ "Resolving data files (Finished)",
40
+ "Preparing batch (Starting)",
41
+ "Preparing batch (Finished)",
42
+ "Encoding audio (Starting)",
43
+ "Encoding audio (Finished)",
44
+ "Post-processing (Starting)",
45
+ "Post-processing (Finished)",
46
+ "Saving results (Starting)",
47
+ "Saving results (Finished)",
48
+ "Completed",
49
+ "Error"
50
+ ]
51
+
52
+
53
+ def chunk_and_pad_audio(audio, chunk_size):
54
+ length = audio.shape[-1]
55
+ padded_length = ((length + chunk_size - 1) // chunk_size) * chunk_size
56
+ padded_audio = F.pad(audio, (0, padded_length - length), mode="constant", value=0)
57
+ batched_audio = padded_audio.unfold(-1, size=chunk_size, step=chunk_size)
58
+ return batched_audio
59
+
60
+
61
+ def generate_snac_encoding(audio, model):
62
+ device = next(model.parameters()).device
63
+ waveform = torch.tensor(audio["array"]).float().to(device)
64
+ if audio["sampling_rate"] != SNAC_SAMPLE_RATE:
65
+ resampler = torchaudio.transforms.Resample(
66
+ orig_freq=audio["sampling_rate"], new_freq=SNAC_SAMPLE_RATE
67
+ ).to(device)
68
+ waveform = resampler(waveform)
69
+ if waveform.dim() == 2:
70
+ waveform = waveform.mean(dim=0, keepdim=True)
71
+ elif waveform.dim() == 1:
72
+ waveform = waveform.unsqueeze(0)
73
+
74
+ num_second = 1
75
+ chunk_size_initial = num_second * SNAC_SAMPLE_RATE
76
+ lcm = np.lcm.reduce([model.vq_strides[0], model.attn_window_size or 1])
77
+ pad_to = model.hop_length * lcm
78
+ chunk_size = int(np.ceil(chunk_size_initial / pad_to) * pad_to)
79
+ audio = chunk_and_pad_audio(waveform, chunk_size)
80
+ audio = audio.permute(1, 0, 2)
81
+
82
+ codes_list = []
83
+ with torch.no_grad():
84
+ for chunk in audio:
85
+ codes = model.encode(chunk.unsqueeze(0))
86
+ codes = [c.cpu() for c in codes]
87
+ codes_list.append(codes)
88
+
89
+ codes_list = [torch.cat(codes_list, dim=0) for codes_list in zip(*codes_list)]
90
+ codes_list = [code.reshape(-1).cpu().tolist() for code in codes_list]
91
+ # Create a dictionary with keys "snac_0", "snac_1", etc.
92
+ snac_dict = {f"snac_{i}": codes for i, codes in enumerate(codes_list)}
93
+ return snac_dict
94
+
95
+
96
+ def process_audio_batch(batch, model):
97
+ results = []
98
+ for item in batch:
99
+ try:
100
+ snac_tokens = generate_snac_encoding(item['mp3'], model)
101
+ if not snac_tokens:
102
+ raise ValueError("Generated SNAC tokens are empty")
103
+
104
+ results.append({
105
+ "__key__": item["__key__"],
106
+ "__url__": item["__url__"],
107
+ "json": item['json'],
108
+ "path": item['mp3']["path"],
109
+ **snac_tokens # Add the snac tokens dictionary
110
+ })
111
+ except Exception as e:
112
+ logging.error(f"Error during post-processing: {str(e)}")
113
+ return results
114
+
115
+
116
+ def save_to_jsonl(data, file_path):
117
+ with open(file_path, "a") as f:
118
+ for item in data:
119
+ json.dump(item, f)
120
+ f.write("\n")
121
+
122
+
123
+ def process_shard(worker_id, status_queue, progress_queue):
124
+ try:
125
+ status_queue.put((worker_id, "Initializing CUDA (Starting)"))
126
+ gpu_id = worker_id % NUM_GPUS
127
+ device = torch.device(f"cuda:{gpu_id}")
128
+ status_queue.put((worker_id, "Initializing CUDA (Finished)"))
129
+
130
+ status_queue.put((worker_id, "Loading SNAC model (Starting)"))
131
+ model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
132
+ status_queue.put((worker_id, "Loading SNAC model (Finished)"))
133
+
134
+ status_queue.put((worker_id, "Loading dataset (Starting)"))
135
+ dataset = load_dataset("amphion/Emilia-Dataset", streaming=True)
136
+ status_queue.put((worker_id, "Loading dataset (Finished)"))
137
+
138
+ status_queue.put((worker_id, "Resolving data files (Starting)"))
139
+ shard_iter = (
140
+ item for i, item in enumerate(dataset["train"]) if i % NUM_WORKERS == worker_id
141
+ )
142
+ first_item = next(shard_iter)
143
+ status_queue.put((worker_id, "Resolving data files (Finished)"))
144
+
145
+ worker_output_dir = os.path.join(OUTPUT_DIR, f"worker_{worker_id}")
146
+ os.makedirs(worker_output_dir, exist_ok=True)
147
+ output_file = os.path.join(
148
+ worker_output_dir, f"processed_worker_{worker_id}.jsonl"
149
+ )
150
+
151
+ batch = [first_item]
152
+ total_processed = 0
153
+
154
+ while True:
155
+ try:
156
+ item = next(shard_iter)
157
+ batch.append(item)
158
+
159
+ if len(batch) == BATCH_SIZE:
160
+ status_queue.put((worker_id, "Preparing batch (Starting)"))
161
+ results = process_audio_batch(batch, model)
162
+ status_queue.put((worker_id, "Preparing batch (Finished)"))
163
+
164
+ status_queue.put((worker_id, "Saving results (Starting)"))
165
+ save_to_jsonl(results, output_file)
166
+ status_queue.put((worker_id, "Saving results (Finished)"))
167
+ total_processed += len(results)
168
+ progress_queue.put(len(results))
169
+ batch = []
170
+
171
+ if total_processed >= ROWS_PER_PUSH:
172
+ break # Stop after reaching ROWS_PER_PUSH
173
+
174
+ if STOP_AFTER is not None and total_processed // BATCH_SIZE >= STOP_AFTER:
175
+ break
176
+ except StopIteration:
177
+ break
178
+
179
+ # Process any remaining items
180
+ if batch:
181
+ results = process_audio_batch(batch, model)
182
+ save_to_jsonl(results, output_file)
183
+ total_processed += len(results)
184
+ progress_queue.put(len(results))
185
+
186
+
187
+ status_queue.put((worker_id, "Completed"))
188
+
189
+ except Exception as e:
190
+ logging.error(
191
+ f"Worker {worker_id} encountered an error: {str(e)}\n{traceback.format_exc()}"
192
+ )
193
+ status_queue.put((worker_id, "Error"))
194
+
195
+
196
+ def main():
197
+ os.makedirs(OUTPUT_DIR, exist_ok=True)
198
+
199
+ ctx = mp.get_context('spawn')
200
+ status_queue = ctx.Queue()
201
+ progress_queue = ctx.Queue()
202
+
203
+ print(f"Initializing {NUM_WORKERS} workers across {NUM_GPUS} GPUs...")
204
+
205
+ # Create and start worker processes
206
+ processes = [
207
+ ctx.Process(target=process_shard, args=(i, status_queue, progress_queue))
208
+ for i in range(NUM_WORKERS)
209
+ ]
210
+ for p in processes:
211
+ p.start()
212
+
213
+ stage_counts = {
214
+ stage: tqdm(total=NUM_WORKERS, desc=f"{stage:<30}", position=i, leave=True)
215
+ for i, stage in enumerate(STAGES)
216
+ }
217
+
218
+ total_rows = NUM_WORKERS * BATCH_SIZE * STOP_AFTER if STOP_AFTER else ROWS_PER_PUSH
219
+ overall_progress = tqdm(
220
+ total=total_rows, desc="Overall Progress", position=len(STAGES), leave=True
221
+ )
222
+
223
+ worker_stages = defaultdict(lambda: "Initializing CUDA (Starting)")
224
+
225
+ while any(p.is_alive() for p in processes):
226
+ try:
227
+ worker_id, status = status_queue.get(timeout=0.1)
228
+ old_stage = worker_stages[worker_id]
229
+ worker_stages[worker_id] = status
230
+
231
+ if old_stage != status:
232
+ if old_stage != "Completed" and old_stage != "Error":
233
+ stage_counts[old_stage].update(-1)
234
+ stage_counts[status].update(1)
235
+ except queue.Empty:
236
+ pass
237
+
238
+ try:
239
+ progress = progress_queue.get(timeout=0.1)
240
+ overall_progress.update(progress)
241
+ except queue.Empty:
242
+ pass
243
+
244
+ for p in processes:
245
+ p.join()
246
+
247
+ for bar in stage_counts.values():
248
+ bar.close()
249
+ overall_progress.close()
250
+
251
+ print("All workers finished processing.")
252
+
253
+ # Print final statistics
254
+ completed_workers = sum(1 for stage in worker_stages.values() if stage == "Completed")
255
+ error_workers = sum(1 for stage in worker_stages.values() if stage == "Error")
256
+ print(f"Completed workers: {completed_workers}")
257
+ print(f"Workers with errors: {error_workers}")
258
+
259
+
260
+ if __name__ == "__main__":
261
+ main()