File size: 11,155 Bytes
85d364c 8640ae3 85d364c 1ad5c90 85d364c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
license: apache-2.0
---
# Artificial Analysis Long Context Reasoning (AA-LCR) Dataset
AA-LCR includes 100 hard text-based questions that require reasoning across multiple real-world documents, with each document set averaging ~100k input tokens. Questions are designed such that answers cannot be directly retrieved from documents and must instead be reasoned from multiple information sources.
## Dataset Development
AA-LCR was created through a rigorous multi-phase process involving several members of the Artificial Analysis research team and more than a dozen undergraduate students who were engaged on a short-term contract basis to write and/or validate questions.
**Document Curation**: We selected diverse document sets (company reports, government consultations, legal documents, academic papers) averaging ~100,000 tokens each, representing real materials knowledge workers analyze.
**Question Creation**: Undergraduate students from various disciplines developed questions with access via a dataset development dashboard to non-frontier test models to validate question difficulty (GPT-4o-mini, Llama-3.1-70B, Gemini 1.5 Flash). These models were specifically chosen to give creators a sense of AI capabilities without access to frontier models, preventing adversarial selection against particular frontier models. Creators were instructed to develop practical questions requiring multi-document reasoning, and to ensure that the questions were sufficiently hard for the above models to fail to get them right.
**Human Validation**: Every question was verified through human testing:
- Evaluators answered questions using the same document sets provided to AI models
- Human performance revealed the benchmark's challenging nature - individual evaluators achieved modest accuracy rates, typically answering 40-60% of questions correctly on the first attempt
- However, when presented with correct answers, evaluators showed high agreement confirming question validity and demonstrating that while difficult, the questions had clear, defensible answers
- Questions failing verification were revised or discarded
- Every question in AA-LCR was answered correctly by at least one human tester, ensuring all questions have verified solutions
This approach validates that AA-LCR tests genuine reasoning capabilities rather than obscure knowledge, while acknowledging the inherent difficulty of long context reasoning tasks even for human experts.
## Technical Details
AA-LCR comprises 100 questions across 7 types of text-only documents (i.e. Company Reports, Industry Reports, Government Consultations, Academia, Legal, Marketing Materials and Survey Reports). Multiple independent documents, forming a Document Set with a total length of ~100k tokens are passed as context for each question. For instance, the Company Documents topic includes separate document sets containing 2023 and 2024 company reports, respectively.
Each question requires using the Document Set and applying general and mathematical reasoning.
<div class="overflow-x-auto my-6">
<table class="min-w-full border border-gray-300 bg-white">
<thead class="bg-gray-50">
<tr>
<th class="border border-gray-300 px-4 py-3 text-left text-sm font-semibold text-gray-900">Parent Category</th>
<th class="border border-gray-300 px-4 py-3 text-left text-sm font-semibold text-gray-900">Total Questions</th>
<th class="border border-gray-300 px-4 py-3 text-left text-sm font-semibold text-gray-900">Total Document Sets</th>
<th class="border border-gray-300 px-4 py-3 text-left text-sm font-semibold text-gray-900">Total Documents</th>
<th class="border border-gray-300 px-4 py-3 text-left text-sm font-semibold text-gray-900">Total Tokens</th>
<th class="border border-gray-300 px-4 py-3 text-left text-sm font-semibold text-gray-900">Average Token Per Document Set</th>
</tr>
</thead>
<tbody class="divide-y divide-gray-200">
<tr class="hover:bg-gray-50">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">Company Documents</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">63</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">16</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">92</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">1,476,239</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">92,265</td>
</tr>
<tr class="hover:bg-gray-50">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">Industry Reports</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">8</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">4</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">18</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">410,698</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">102,675</td>
</tr>
<tr class="hover:bg-gray-50">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">Government Consultations</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">11</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">3</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">60</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">325,254</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">108,418</td>
</tr>
<tr class="hover:bg-gray-50">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">Academia</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">5</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">2</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">14</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">223,776</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">111,888</td>
</tr>
<tr class="hover:bg-gray-50">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">Legal</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">6</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">2</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">23</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">233,050</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">116,525</td>
</tr>
<tr class="hover:bg-gray-50">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">Marketing</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">6</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">2</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">16</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">217,694</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">108,847</td>
</tr>
<tr class="hover:bg-gray-50">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">Survey Reports</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">1</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">1</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">11</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">93,046</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900">93,046</td>
</tr>
<tr class="bg-gray-100 font-semibold">
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900 font-bold">Full Dataset</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900 font-bold">100</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900 font-bold">30</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900 font-bold">234</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900 font-bold">2,979,757</td>
<td class="border border-gray-300 px-4 py-3 text-sm text-gray-900 font-bold">99,325</td>
</tr>
</tbody>
</table>
</div>
**Sample Question:**
\`\`\`json
For the company and quarter where the company reported a 13.5% decline on the prior quarters operating income. What was their adjusted EBITDA? List the company name and adjusted EBITDA
Answer: Equinix, $901 million
\`\`\`
Examples of other types of questions include:
- **Financial Analysis and Comparative Metrics:** Extract financial data and calculate performance metrics
- **Legal and Regulatory Interpretation**: Identify cases/policies under exclusion rules, interpret outcomes and applicability and surface cited sections/definitions
- **Multi-Document Information Synthesis:** Find and connect information scattered across multiple documents to identify themes and correlate data points
- **Temporal and Conditional Logic Analysis:** Track time-series trends, implement conditional decision rules, and determine threshold-based alerts or actions
- **Research and Classification:** Analyze patterns, classify and identify relevant documents to recall specific information
**Prompt Template:**
We load the relevant documents for each question into context in the same prompt as the question text.
```python
documents_text = "\n\n".join(f"BEGIN DOCUMENT {i + 1}:\n{doc}\nEND DOCUMENT {i + 1}" for i, doc in enumerate(docs))
prompt = """BEGIN INPUT DOCUMENTS
{documents_text}
END INPUT DOCUMENTS
Answer the following question using the input documents provided above.
START QUESTION
{question}
END QUESTION
"""
```
Reported token counts per question are based on the completed prompt, using the `cl100k_base` tokenizer from `tiktoken`.
## Scoring Approach
We use an LLM-based equality checker to evaluate responses:
\`\`\`
Assess whether the following CANDIDATE ANSWER is CORRECT or INCORRECT.
For the CANDIDATE ANSWER to be correct, it must be consistent with the OFFICIAL ANSWER.
The question, for reference only: {question}
The OFFICIAL ANSWER: {official_answer}
CANDIDATE ANSWER TO ASSESS: {candidate_answer}
Reply only with CORRECT or INCORRECT.
\`\`\`
Qwen3 235B A22B 2507 Non-reasoning is used as the equality checker model.
## Access and Citation
The AA-LCR dataset is available at [https://huggingface.co/datasets/ArtificialAnalysis/AA-LCR](https://huggingface.co/datasets/ArtificialAnalysis/AA-LCR).
If you use AA-LCR in your research, please cite:
\`\`\`json
@dataset{artificialanalysis2025lcr,
title={Artificial Analysis Long Context Reasoning Benchmark(LCR)},
author={Artificial Analysis Team},
year={2025},
publisher={Artificial Analysis, Inc.}
}
\`\`\` |