Update README.md
Browse files
README.md
CHANGED
@@ -9,125 +9,336 @@
|
|
9 |
**ShareRobot**, a high-quality heterogeneous dataset that labels multi-dimensional information, including task planning, object affordance, and end-effector trajectory, effectively enhancing various robotic capabilities.
|
10 |
|
11 |
## Overview of ShareRobot Dataset
|
|
|
|
|
12 |
|
|
|
13 |
|
|
|
14 |
|
15 |
|
16 |
|
17 |
-
## Dataset Sources
|
18 |
-
|
19 |
-
<!-- Provide the basic links for the dataset. -->
|
20 |
-
|
21 |
-
<!-- - **Repository:** [More Information Needed]
|
22 |
-
- **Paper [optional]:** [More Information Needed]
|
23 |
-
- **Demo [optional]:** [More Information Needed]
|
24 |
-
-->
|
25 |
-
## Uses
|
26 |
-
|
27 |
-
<!-- Address questions around how the dataset is intended to be used. -->
|
28 |
-
|
29 |
-
### Direct Use
|
30 |
-
|
31 |
-
<!-- This section describes suitable use cases for the dataset. -->
|
32 |
-
|
33 |
-
[More Information Needed]
|
34 |
-
|
35 |
-
### Out-of-Scope Use
|
36 |
-
|
37 |
-
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
|
38 |
-
|
39 |
-
[More Information Needed]
|
40 |
-
|
41 |
-
## Dataset Structure
|
42 |
-
|
43 |
-
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
|
44 |
-
|
45 |
-
[More Information Needed]
|
46 |
-
|
47 |
-
## Dataset Creation
|
48 |
-
|
49 |
-
### Curation Rationale
|
50 |
-
|
51 |
-
<!-- Motivation for the creation of this dataset. -->
|
52 |
-
|
53 |
-
[More Information Needed]
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
#### Personal and Sensitive Information
|
88 |
|
89 |
-
|
90 |
|
91 |
-
[
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
|
|
|
|
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
## Citation [optional]
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
|
|
|
|
110 |
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
-
|
|
|
|
|
|
|
114 |
|
115 |
-
|
|
|
|
|
116 |
|
117 |
-
## Glossary [optional]
|
118 |
|
119 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
|
120 |
|
121 |
-
|
122 |
|
123 |
-
## More Information [optional]
|
124 |
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
-
## Dataset Card Authors [optional]
|
128 |
|
129 |
-
[More Information Needed]
|
130 |
|
131 |
-
##
|
132 |
|
133 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
**ShareRobot**, a high-quality heterogeneous dataset that labels multi-dimensional information, including task planning, object affordance, and end-effector trajectory, effectively enhancing various robotic capabilities.
|
10 |
|
11 |
## Overview of ShareRobot Dataset
|
12 |
+

|
13 |
+
For **planning**, we have 51,403 episodes and each with 30 frames. In the process of data generation, we design 5 different templates for each of the 10 question types in RoboVQA [1]. In the process of data generation, we randomly select 2 templates of each question type to generate question-answer pairs for every instance. This process transforms 51,403 instances into 1,027,990 question-answer pairs, with annotators monitoring data generation to maintain the dataset’s integrity.
|
14 |
|
15 |
+
For **Affordance**, we have 6,522 images and each with affordance areas aligned with an instruction.
|
16 |
|
17 |
+
For **Trajectory**, we have 6,870 images and each with at least 3 {x, y} coordinates aligned with an instruction.
|
18 |
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
## Dataset Sources
|
23 |
+
|
24 |
+

|
25 |
+
|
26 |
+
**ShareRobot** dataset contains 23 original datasets from Open X-Embodiment dataset [2], 12 embodiments and 107 types of atomic tasks.
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
### Raw Dataset for Planning
|
31 |
+
|
32 |
+
| Raw Dataset | Number of Raws |
|
33 |
+
|:-------------------------------------------------------------:| --------------:|
|
34 |
+
| nyu_door_opening_surprising_effectiveness | 421 |
|
35 |
+
| bridge | 15738 |
|
36 |
+
| dlr_edan_shared_control_converted_externally_to_rlds | 63 |
|
37 |
+
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 92 |
|
38 |
+
| cmu_stretch | 10 |
|
39 |
+
| asu_table_top_converted_externally_to_rlds | 109 |
|
40 |
+
| dlr_sara_pour_converted_externally_to_rlds | 51 |
|
41 |
+
| utokyo_xarm_bimanual_converted_externally_to_rlds | 27 |
|
42 |
+
| robo_set | 18164 |
|
43 |
+
| dobbe | 5200 |
|
44 |
+
| berkeley_autolab_ur5 | 882 |
|
45 |
+
| qut_dexterous_manpulation | 192 |
|
46 |
+
| aloha_mobile | 264 |
|
47 |
+
| dlr_sara_grid_clamp_converted_externally_to_rlds | 40 |
|
48 |
+
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 569 |
|
49 |
+
| ucsd_kitchen_dataset_converted_externally_to_rlds | 39 |
|
50 |
+
| jaco_play | 956 |
|
51 |
+
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 64 |
|
52 |
+
| conq_hose_manipulation | 56 |
|
53 |
+
| fmb | 7836 |
|
54 |
+
| plex_robosuite | 398 |
|
55 |
+
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 189 |
|
56 |
+
| viola | 44 |
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
### Raw Dataset for Affordance
|
61 |
+
|
62 |
+
| Raw Dataset | Number of Raws |
|
63 |
+
|:-------------------------------------------------------------:| -------------:|
|
64 |
+
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 24 |
|
65 |
+
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 23 |
|
66 |
+
| ucsd_kitchen_dataset_converted_externally_to_rlds | 10 |
|
67 |
+
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 112 |
|
68 |
+
| nyu_door_opening_surprising_effectiveness | 85 |
|
69 |
+
| jaco_play | 171 |
|
70 |
+
| bridge | 2610 |
|
71 |
+
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 12 |
|
72 |
+
| asu_table_top_converted_externally_to_rlds | 24 |
|
73 |
+
| viola | 1 |
|
74 |
+
| berkeley_autolab_ur5 | 122 |
|
75 |
+
| aloha_mobile | 23 |
|
76 |
+
| conq_hose_manipulation | 1 |
|
77 |
+
| dobbe | 717 |
|
78 |
+
| fmb | 561 |
|
79 |
+
| plex_robosuite | 13 |
|
80 |
+
| qut_dexterous_manpulation | 16 |
|
81 |
+
| robo_set | 1979 |
|
82 |
+
| dlr_edan_shared_control_converted_externally_to_rlds | 18 |
|
83 |
+
| **Summary** | 6522 |
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
### Raw Dataset for Trajectory
|
88 |
+
|
89 |
+
| Raw Dataset | Number of Raws |
|
90 |
+
|:-------------------------------------------------------------:| -------------:|
|
91 |
+
| utokyo_pr2_tabletop_manipulation_converted_externally_to_rlds | 35 |
|
92 |
+
| utokyo_xarm_pick_and_place_converted_externally_to_rlds | 36 |
|
93 |
+
| ucsd_kitchen_dataset_converted_externally_to_rlds | 19 |
|
94 |
+
| dlr_sara_grid_clamp_converted_externally_to_rlds | 1 |
|
95 |
+
| ucsd_pick_and_place_dataset_converted_externally_to_rlds | 109 |
|
96 |
+
| nyu_door_opening_surprising_effectiveness | 74 |
|
97 |
+
| jaco_play | 175 |
|
98 |
+
| utokyo_xarm_bimanual_converted_externally_to_rlds | 7 |
|
99 |
+
| bridge | 2986 |
|
100 |
+
| utokyo_pr2_opening_fridge_converted_externally_to_rlds | 12 |
|
101 |
+
| asu_table_top_converted_externally_to_rlds | 22 |
|
102 |
+
| berkeley_autolab_ur5 | 164 |
|
103 |
+
| dobbe | 759 |
|
104 |
+
| fmb | 48 |
|
105 |
+
| qut_dexterous_manpulation | 29 |
|
106 |
+
| robo_set | 2374 |
|
107 |
+
| dlr_sara_pour_converted_externally_to_rlds | 3 |
|
108 |
+
| dlr_edan_shared_control_converted_externally_to_rlds | 17 |
|
109 |
+
| **Summary** | 6870 |
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
## Data Format
|
114 |
+
|
115 |
+
### Planning
|
116 |
+
|
117 |
+

|
118 |
+
|
119 |
+
```json
|
120 |
+
{
|
121 |
+
"id"{
|
122 |
+
"id": 0,
|
123 |
+
"task": "Future_Prediction_Task",
|
124 |
+
"selected_step": 3,
|
125 |
+
"conversations": [
|
126 |
+
{
|
127 |
+
"from": "human",
|
128 |
+
"value": "<image 0-25> After <move the grasped banana towards the mug>, what's the most probable next event?"
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"from": "gpt",
|
132 |
+
"value": "<place the banana into the mug>"
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"image": [
|
136 |
+
"/path/to/image_0-25"
|
137 |
+
]
|
138 |
+
}
|
139 |
+
}
|
140 |
+
```
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
### Affordance
|
147 |
+
|
148 |
+
<!---->
|
149 |
+
<div style="display: flex; gap: 10px;">
|
150 |
+
<img src="./images/2d94d985-d47e-4899-9760-c1cb8f19cd89.png" style="width: 300px;" />
|
151 |
+
<img src="./images/a7817c0b-04b1-4a7c-9535-f9ff7801a689.png" style="width: 300px;" />
|
152 |
+
</div>
|
153 |
+
|
154 |
+
```json
|
155 |
+
{
|
156 |
+
|
157 |
+
"id": 2486,
|
158 |
+
"meta_data": {
|
159 |
+
"original_dataset": "bridge",
|
160 |
+
"original_width": 640,
|
161 |
+
"original_height": 480
|
162 |
+
},
|
163 |
+
"instruction": "place the red fork to the left of the left burner",
|
164 |
+
"affordance": {
|
165 |
+
"x": 352.87425387858815,
|
166 |
+
"y": 186.47871614766484,
|
167 |
+
"width": 19.296008229513156,
|
168 |
+
"height": 14.472006172134865
|
169 |
+
}
|
170 |
+
```
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
#### Visualize Code
|
175 |
+
|
176 |
+
```python
|
177 |
+
import json
|
178 |
+
import os
|
179 |
+
import cv2
|
180 |
+
import numpy as np
|
181 |
+
|
182 |
+
img_dir = '/path/to/your/original/images/dir'
|
183 |
+
affordance_json = '/path/to/your/affordances/json'
|
184 |
+
output_img_dir = '/path/to/your/visualized/images/dir'
|
185 |
+
|
186 |
+
with open(affordance_json, 'r') as f:
|
187 |
+
data = json.load(f)
|
188 |
+
for item in data:
|
189 |
+
filepath = os.path.join(img_dir, item['id'])
|
190 |
+
|
191 |
+
image = cv2.imread(filepath)
|
192 |
+
color = (255, 0, 0)
|
193 |
+
thickness = 2
|
194 |
+
|
195 |
+
x_min,y_min = item['affordance']['x'], item['affordance']['y']
|
196 |
+
x_max,y_max = item['affordance']['x']+item['affordance']['width'], item['affordance']['y']+item['affordance']['height']
|
197 |
+
|
198 |
+
# 定义矩形的四个顶点坐标
|
199 |
+
pts = np.array([
|
200 |
+
[x_min, y_min], # 左上角
|
201 |
+
[x_max, y_min], # 右上角
|
202 |
+
[x_max, y_max], # 右下角
|
203 |
+
[x_min, y_max] # 左下角
|
204 |
+
], dtype=np.float32)
|
205 |
+
|
206 |
+
# 绘制矩形框
|
207 |
+
cv2.polylines(image, [pts.astype(int)], isClosed=True, color=color, thickness=thickness)
|
208 |
+
|
209 |
+
# 获取相对路径并拼接目标路径
|
210 |
+
relative_path = os.path.relpath(filepath, img_dir) # 获取相对于 img_dir 的相对路径
|
211 |
+
output_img_path = os.path.join(output_img_dir, relative_path) # 拼接目标路径
|
212 |
+
|
213 |
+
# 创建目标文件夹
|
214 |
+
output_directory = os.path.dirname(output_img_path)
|
215 |
+
if not os.path.exists(output_directory):
|
216 |
+
os.makedirs(output_directory)
|
217 |
+
|
218 |
+
# 打印调试信息
|
219 |
+
print(f"Input filepath: {filepath}")
|
220 |
+
print(f"Output image path: {output_img_path}")
|
221 |
+
print(f"Output directory: {output_directory}")
|
222 |
+
|
223 |
+
# 保存图像
|
224 |
+
cv2.imwrite(output_img_path, image)
|
225 |
+
|
226 |
+
```
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
|
|
|
231 |
|
232 |
+
### Trajectory
|
233 |
|
234 |
+
<!-- -->
|
235 |
+
<div style="display: flex; gap: 10px;">
|
236 |
+
<img src="./images/5b923b31-dbbf-470f-af09-5125f5b91ab0.png" style="width: 300px;" />
|
237 |
+
<img src="./images/1af4535a-acc3-4417-ae33-675f4301f560.png" style="width: 300px;" />
|
238 |
+
</div>
|
239 |
|
240 |
+
```json
|
241 |
+
{
|
242 |
+
"id": 456,
|
243 |
+
"meta_data": {
|
244 |
+
"original_dataset": "bridge",
|
245 |
+
"original_width": 640,
|
246 |
+
"original_height": 480
|
247 |
+
},
|
248 |
+
"instruction": "reach for the carrot",
|
249 |
+
"points": [
|
250 |
+
[
|
251 |
+
265.45454545454544,
|
252 |
+
120.0
|
253 |
+
],
|
254 |
+
[
|
255 |
+
275.1515151515152,
|
256 |
+
162.42424242424244
|
257 |
+
],
|
258 |
+
[
|
259 |
+
280.0,
|
260 |
+
213.33333333333331
|
261 |
+
],
|
262 |
+
[
|
263 |
+
280.0,
|
264 |
+
259.3939393939394
|
265 |
+
]
|
266 |
+
]
|
267 |
+
},
|
268 |
+
```
|
269 |
|
270 |
+
#### Visualize Code
|
271 |
|
272 |
+
```python
|
273 |
+
import json
|
274 |
+
import os
|
275 |
+
from PIL import Image, ImageDraw
|
276 |
|
277 |
+
trajectory_final = '/path/to/your/trajectory_json'
|
278 |
+
img_dir = '/path/to/your/original/images/dir'
|
279 |
+
output_img_dir = '/path/to/your/visualzed/images/dir'
|
280 |
|
281 |
+
with open(trajectory_final, 'r') as f:
|
282 |
+
data = json.load(f)
|
283 |
+
for item in data:
|
284 |
+
filepath = os.path.join(img_dir, item['id'])
|
285 |
+
points = item['points']
|
286 |
|
287 |
+
image = Image.open(filepath).convert("RGB") # 确保图像是 RGB 模式
|
288 |
+
draw = ImageDraw.Draw(image) # 创建绘图对象
|
289 |
+
# 定���颜色和线宽
|
290 |
+
color = (255, 0, 0) # 红色 (RGB 格式)
|
291 |
+
thickness = 2
|
292 |
|
|
|
293 |
|
294 |
+
scaled_points = [
|
295 |
+
(point[0], point[1])
|
296 |
+
for point in points
|
297 |
+
]
|
298 |
+
# 按照顺序连接相邻的点
|
299 |
+
for i in range(len(scaled_points) - 1):
|
300 |
+
draw.line([scaled_points[i], scaled_points[i + 1]], fill=color, width=thickness)
|
301 |
|
302 |
+
# 获取相对路径并拼接目标路径
|
303 |
+
relative_path = os.path.relpath(filepath, img_dir)
|
304 |
+
output_img_path = os.path.join(output_img_dir, relative_path)
|
305 |
|
306 |
+
# 创建目标文件夹
|
307 |
+
output_directory = os.path.dirname(output_img_path)
|
308 |
+
if not os.path.exists(output_directory):
|
309 |
+
os.makedirs(output_directory)
|
310 |
|
311 |
+
# 打印调试信息
|
312 |
+
print(f"Input filepath: {filepath}")
|
313 |
+
print(f"Output image path: {output_img_path}")
|
314 |
+
print(f"Output directory: {output_directory}")
|
315 |
|
316 |
+
# 保存图像
|
317 |
+
image.save(output_img_path)
|
318 |
+
```
|
319 |
|
|
|
320 |
|
|
|
321 |
|
322 |
+
## Evaluation
|
323 |
|
|
|
324 |
|
|
|
325 |
|
|
|
326 |
|
|
|
327 |
|
328 |
+
## Reference
|
329 |
|
330 |
+
[1] Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan, Christine Chan,Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J Joshi,et al. Robovqa: Multimodal long-horizon reasoning forrobotics. In ICRA, pages 645–652, 2024.
|
331 |
+
|
332 |
+
[2] Abby O’Neill, Abdul Rehman, Abhinav Gupta, AbhiramMaddukuri, Abhishek Gupta, Abhishek Padalkar, AbrahamLee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al.Open x-embodiment: Robotic learning datasets and rt-xmodels. arXiv preprint arXiv:2310.08864, 2023.
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
## Citation
|
337 |
+
```
|
338 |
+
@article{ji2025robobrain,
|
339 |
+
title={RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete},
|
340 |
+
author={Ji, Yuheng and Tan, Huajie and Shi, Jiayu and Hao, Xiaoshuai and Zhang, Yuan and Zhang, Hengyuan and Wang, Pengwei and Zhao, Mengdi and Mu, Yao and An, Pengju and others},
|
341 |
+
journal={arXiv preprint arXiv:2502.21257},
|
342 |
+
year={2025}
|
343 |
+
}
|
344 |
+
```
|