File size: 7,585 Bytes
fc707cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import networkx as nx
import os
import pathlib
import pickle

DESCRIPTION = '''The Minimum Dominant Set (MDS) problem is a fundamental NP-hard optimization problem in graph theory. Given an undirected graph G = (V, E), where V is a set of vertices and E is a set of edges, the goal is to find the smallest subset D ⊆ V such that every vertex in V is either in D or adjacent to at least one vertex in D.'''


def solve(**kwargs):
    """
    Solve the Minimum Dominant Set problem for a given test case.

    Input:
        kwargs (dict): A dictionary with the following keys:
            - graph (networkx.Graph): The graph to solve

    Returns:
        dict: A solution dictionary containing:
            - mds_nodes (list): List of node indices in the minimum dominant set
    """
    # TODO: Implement your MDS solving algorithm here. Below is a placeholder.
    # Your function must yield multiple solutions over time, not just return one solution
    # Use Python's yield keyword repeatedly to produce a stream of solutions
    # Each yielded solution should be better than the previous one
    while True:
        yield {
        'mds_nodes': [0, 1, ...],
    }


def load_data(file_path):
    """
    Load test data for an MDS instance (same API as before).

    Args:
        file_path (str or pathlib.Path): Path to the .gr file.

    Returns:
        list[dict]: [{'graph': nx.Graph}]
    """
    file_path = pathlib.Path(file_path)
    if not file_path.exists():
        raise FileNotFoundError(f"File not found: {file_path}")

    G = nx.Graph()
    edges = []                     # collect edges, add in batch (fast)

    with file_path.open('r') as f:
        for line in f:
            if not line or line[0].isspace():      # skip blanks quickly
                continue

            if line[0] == 'p':                     # “p ds NODES EDGES”
                _, fmt, n_nodes, *_ = line.split()
                if fmt != 'ds':
                    raise ValueError(f"Unexpected format: {fmt}")
                G.add_nodes_from(range(1, int(n_nodes) + 1))
                continue

            # Otherwise it must be an edge line: "u v"
            u_str, v_str = line.split()
            edges.append((int(u_str), int(v_str)))

    G.add_edges_from(edges)        # one shot edge insertion

    return [{'graph': G}]

def eval_func(**kwargs):
    """
    Evaluate a Minimum Dominant Set solution for correctness.

    Args:
        graph (networkx.Graph): The graph that was solved
        mds_nodes (list): List of nodes claimed to be in the minimum dominant set

    Returns:
        int: The size of the valid dominant set, or raises an exception if invalid
    """
    graph = kwargs['graph']
    mds_nodes = kwargs['mds_nodes']

    # Check if mds_nodes is a list
    if not isinstance(mds_nodes, list):
        raise Exception("mds_nodes must be a list")

    # Check if all nodes in mds_nodes exist in the graph
    node_set = set(graph.nodes())
    for node in mds_nodes:
        if node not in node_set:
            raise Exception(f"Node {node} in solution does not exist in graph")

    # Check for duplicates in mds_nodes
    if len(mds_nodes) != len(set(mds_nodes)):
        raise Exception("Duplicate nodes in solution")

    # Get the actual size
    actual_size = len(mds_nodes)

    # Most important: Check if it's a dominant set (every node is either in the set or adjacent to a node in the set)
    dominated_nodes = set(mds_nodes)  # Nodes in the set
    
    # Add all neighbors of nodes in the set
    for node in mds_nodes:
        dominated_nodes.update(graph.neighbors(node))
    
    # Check if all nodes are dominated
    if dominated_nodes != node_set:
        undominated = node_set - dominated_nodes
        raise Exception(f"Not a dominant set: nodes {undominated} are not dominated")

    return actual_size


def norm_score(results):
    optimal_scores = {'easy_test_instances/exact_066.gr': [707.0], 'easy_test_instances/exact_088.gr': [707.0], 'easy_test_instances/exact_075.gr': [706.0], 'easy_test_instances/exact_093.gr': [706.0], 'easy_test_instances/exact_097.gr': [706.0], 'easy_test_instances/exact_081.gr': [1216.0], 'easy_test_instances/exact_057.gr': [705.0], 'easy_test_instances/exact_063.gr': [805.0], 'easy_test_instances/exact_072.gr': [805.0], 'easy_test_instances/exact_092.gr': [1183.0], 'easy_test_instances/exact_069.gr': [1171.0], 'easy_test_instances/exact_033.gr': [5539.0], 'easy_test_instances/exact_071.gr': [2689.0], 'easy_test_instances/exact_051.gr': [849.0], 'easy_test_instances/exact_067.gr': [989.0], 'easy_test_instances/exact_076.gr': [1597.0], 'easy_test_instances/exact_058.gr': [740.0], 'easy_test_instances/exact_056.gr': [1512.0], 'easy_test_instances/exact_083.gr': [1866.0], 'easy_test_instances/exact_034.gr': [5842.0], 'hard_test_instances/heuristic_049.gr': [3062.0], 'hard_test_instances/heuristic_065.gr': [3159.0], 'hard_test_instances/heuristic_016.gr': [3352.0], 'hard_test_instances/heuristic_042.gr': [2999.0], 'hard_test_instances/heuristic_017.gr': [3330.0], 'hard_test_instances/heuristic_019.gr': [3062.0], 'hard_test_instances/heuristic_036.gr': [3050.0], 'hard_test_instances/heuristic_067.gr': [3277.0], 'hard_test_instances/heuristic_097.gr': [3025.0], 'hard_test_instances/heuristic_015.gr': [3077.0], 'hard_test_instances/heuristic_059.gr': [2997.0], 'hard_test_instances/heuristic_037.gr': [3054.0], 'hard_test_instances/heuristic_026.gr': [3025.0], 'hard_test_instances/heuristic_060.gr': [3001.0], 'hard_test_instances/heuristic_078.gr': [2829.0], 'hard_test_instances/heuristic_044.gr': [2937.0], 'hard_test_instances/heuristic_003.gr': [637607.0], 'hard_test_instances/heuristic_066.gr': [1047.0], 'hard_test_instances/heuristic_074.gr': [331531.0], 'hard_test_instances/heuristic_077.gr': [427644.0], 'valid_instances/ba_graph_large_train_12.txt': [96.0], 'valid_instances/ba_graph_large_train_11.txt': [93.0], 'valid_instances/ba_graph_large_train_10.txt': [123.0], 'valid_instances/ba_graph_large_train_19.txt': [116.0], 'valid_instances/ba_graph_large_train_14.txt': [93.0], 'valid_instances/ba_graph_large_train_0.txt': [118.0], 'valid_instances/ba_graph_large_train_17.txt': [106.0], 'valid_instances/ba_graph_large_train_6.txt': [107.0], 'valid_instances/ba_graph_large_train_18.txt': [117.0], 'valid_instances/ba_graph_large_train_13.txt': [120.0], 'valid_instances/ba_graph_large_train_7.txt': [86.0], 'valid_instances/ba_graph_large_train_5.txt': [114.0], 'valid_instances/ba_graph_large_train_3.txt': [118.0], 'valid_instances/ba_graph_large_train_9.txt': [114.0], 'valid_instances/ba_graph_large_train_15.txt': [92.0], 'valid_instances/ba_graph_large_train_16.txt': [112.0], 'valid_instances/ba_graph_large_train_8.txt': [124.0], 'valid_instances/ba_graph_large_train_2.txt': [116.0], 'valid_instances/ba_graph_large_train_4.txt': [121.0], 'valid_instances/ba_graph_large_train_1.txt': [124.0]}
    # print(results)
    normed = {}
    for case, (scores, error_message) in results.items():
        if case not in optimal_scores:
            continue  # Skip if there's no optimal score defined.
        optimal_list = optimal_scores[case]
        normed_scores = []
        # Compute normalized score for each index.
        for idx, score in enumerate(scores):
            if isinstance(score, (int, float)):
                normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx]))
            else:
                normed_scores.append(score)
        normed[case] = (normed_scores, error_message)

    return normed