Zedge commited on
Commit
00d035d
·
verified ·
1 Parent(s): 5e941bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +268 -64
README.md CHANGED
@@ -1,64 +1,268 @@
1
- ---
2
- license: apache-2.0
3
- dataset_info:
4
- features:
5
- - name: image_id
6
- dtype: string
7
- - name: image_path
8
- dtype: image
9
- - name: image_title
10
- dtype: string
11
- - name: image_description
12
- dtype: string
13
- - name: scene_description
14
- dtype: string
15
- - name: all_labels
16
- sequence: string
17
- - name: segmented_objects
18
- sequence: string
19
- - name: segmentation_masks
20
- sequence:
21
- sequence: float64
22
- - name: exif_make
23
- dtype: string
24
- - name: exif_model
25
- dtype: string
26
- - name: exif_f_number
27
- dtype: string
28
- - name: exif_exposure_time
29
- dtype: string
30
- - name: exif_exposure_mode
31
- dtype: string
32
- - name: exif_exposure_program
33
- dtype: string
34
- - name: exif_metering_mode
35
- dtype: string
36
- - name: exif_lens
37
- dtype: string
38
- - name: exif_focal_length
39
- dtype: string
40
- - name: exif_iso
41
- dtype: string
42
- - name: exif_date_original
43
- dtype: string
44
- - name: exif_software
45
- dtype: string
46
- - name: exif_orientation
47
- dtype: string
48
- splits:
49
- - name: train
50
- num_bytes: 3735124734.561
51
- num_examples: 7069
52
- - name: validation
53
- num_bytes: 410656962.0
54
- num_examples: 771
55
- download_size: 4166184994
56
- dataset_size: 4145781696.561
57
- configs:
58
- - config_name: default
59
- data_files:
60
- - split: train
61
- path: data/train-*
62
- - split: validation
63
- path: data/validation-*
64
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - image-segmentation
5
+ - image-classification
6
+ - image-to-text
7
+ task_ids:
8
+ - semantic-segmentation
9
+ - scene-description
10
+ - image-captioning
11
+ language:
12
+ - en
13
+ tags:
14
+ - computer-vision
15
+ - photography
16
+ - segmentation
17
+ - annotations
18
+ - EXIF
19
+ - scene-understanding
20
+ - multimodal
21
+ size_categories:
22
+ - 1K<n<10K
23
+ dataset_info:
24
+ features:
25
+ - name: image_id
26
+ dtype: string
27
+ - name: image_path
28
+ dtype: image
29
+ - name: image_title
30
+ dtype: string
31
+ - name: image_description
32
+ dtype: string
33
+ - name: scene_description
34
+ dtype: string
35
+ - name: all_labels
36
+ sequence: string
37
+ - name: segmented_objects
38
+ sequence: string
39
+ - name: segmentation_masks
40
+ sequence:
41
+ sequence: float64
42
+ - name: exif_make
43
+ dtype: string
44
+ - name: exif_model
45
+ dtype: string
46
+ - name: exif_f_number
47
+ dtype: string
48
+ - name: exif_exposure_time
49
+ dtype: string
50
+ - name: exif_exposure_mode
51
+ dtype: string
52
+ - name: exif_exposure_program
53
+ dtype: string
54
+ - name: exif_metering_mode
55
+ dtype: string
56
+ - name: exif_lens
57
+ dtype: string
58
+ - name: exif_focal_length
59
+ dtype: string
60
+ - name: exif_iso
61
+ dtype: string
62
+ - name: exif_date_original
63
+ dtype: string
64
+ - name: exif_software
65
+ dtype: string
66
+ - name: exif_orientation
67
+ dtype: string
68
+ splits:
69
+ - name: train
70
+ num_bytes: 3735124734.561
71
+ num_examples: 7069
72
+ - name: validation
73
+ num_bytes: 410656962
74
+ num_examples: 771
75
+ download_size: 4166184994
76
+ dataset_size: 4145781696.561
77
+ configs:
78
+ - config_name: default
79
+ data_files:
80
+ - split: train
81
+ path: data/train-*
82
+ - split: validation
83
+ path: data/validation-*
84
+ ---
85
+
86
+ # GuruShots Sample Dataset (GSD)
87
+
88
+ ## Dataset Summary
89
+
90
+ The GuruShots Sample Dataset (GSD) is a high-fidelity, human-curated computer vision-ready dataset comprised of 7,840 peer-ranked, fully annotated photographic images, 350,000+ words of descriptive text, and comprehensive metadata. While the GSD is being released under an open source license, a sister dataset of over 10,000 fully annotated and segmented images is available for immediate commercial licensing, and the broader GuruShots ecosystem contains over 100 million images in its catalog.
91
+
92
+ Each image includes multi-tier human annotations and semantic segmentation masks. Generously contributed to the community by the GuruShots photography platform, where users engage in themed competitions, the GSD uniquely captures aesthetic preference signals and high-quality technical metadata (EXIF) across an expansive diversity of photographic styles, camera types, and subject matter. The dataset is optimized for fine-tuning and evaluating multimodal vision-language models, especially in scene description and stylistic comprehension tasks.
93
+
94
+ * **Technical Report** - Discover the methodology and technical details behind the GSD.
95
+ * **Github Repo** - Access the complete weights and code which were used to evaluate the GSD.
96
+
97
+ This dataset is ready for commercial/non-commercial use.
98
+
99
+ ## Dataset Structure
100
+
101
+ * **Size**: 7,840 images (7,069 train, 771 validation)
102
+ * **Format**: Apache Parquet files for metadata, with images in JPG format
103
+ * **Total Size**: ~4.1GB
104
+ * **Languages**: English (annotations)
105
+ * **Annotation Quality**: All annotations were verified through a multi-tier human-in-the-loop process
106
+
107
+ ### Data Fields
108
+
109
+ | Column Name | Description | Data Type |
110
+ |-------------|-------------|-----------|
111
+ | `image_id` | Unique identifier for the image | string |
112
+ | `image_path` | Image file (automatically loaded as PIL Image) | image |
113
+ | `image_title` | Human-written title summarizing the content or subject | string |
114
+ | `image_description` | Human-written narrative describing what is visibly present | string |
115
+ | `scene_description` | Technical and compositional details about image capture | string |
116
+ | `all_labels` | All object categories identified in the image | list of strings |
117
+ | `segmented_objects` | Objects/elements that have segmentation masks | list of strings |
118
+ | `segmentation_masks` | Segmentation polygons as coordinate points [x,y,...] | list of lists of floats |
119
+ | `exif_make` | Camera manufacturer | string |
120
+ | `exif_model` | Camera model | string |
121
+ | `exif_f_number` | Aperture value (lower = wider aperture) | string |
122
+ | `exif_exposure_time` | Sensor exposure time (e.g., 1/500 sec) | string |
123
+ | `exif_exposure_mode` | Camera exposure setting (Auto/Manual/etc.) | string |
124
+ | `exif_exposure_program` | Exposure program mode | string |
125
+ | `exif_metering_mode` | Light metering mode | string |
126
+ | `exif_lens` | Lens information and specifications | string |
127
+ | `exif_focal_length` | Lens focal length (millimeters) | string |
128
+ | `exif_iso` | Camera sensor sensitivity to light | string |
129
+ | `exif_date_original` | Original timestamp when image was taken | string |
130
+ | `exif_software` | Post-processing software used | string |
131
+ | `exif_orientation` | Image layout (horizontal/vertical) | string |
132
+
133
+ ## How to Use
134
+
135
+ ### Basic Loading
136
+
137
+ ```python
138
+ from datasets import load_dataset
139
+
140
+ # Load the entire dataset
141
+ dataset = load_dataset("Dataseeds/GuruShots-Sample-Dataset-GSD")
142
+
143
+ # Load specific split
144
+ train_data = load_dataset("Dataseeds/GuruShots-Sample-Dataset-GSD", split="train")
145
+ val_data = load_dataset("Dataseeds/GuruShots-Sample-Dataset-GSD", split="validation")
146
+
147
+ # Access images and annotations
148
+ sample = dataset["train"][0]
149
+ image = sample["image_path"] # PIL Image object
150
+ title = sample["image_title"]
151
+ description = sample["image_description"]
152
+ segments = sample["segmented_objects"]
153
+ masks = sample["segmentation_masks"]
154
+
155
+ print(f"Title: {title}")
156
+ print(f"Description: {description}")
157
+ print(f"Segmented objects: {segments}")
158
+ ```
159
+
160
+ ### PyTorch DataLoader
161
+
162
+ ```python
163
+ from datasets import load_dataset
164
+ from torch.utils.data import DataLoader
165
+ import torch
166
+
167
+ # Load dataset
168
+ dataset = load_dataset("Dataseeds/GuruShots-Sample-Dataset-GSD", split="train")
169
+
170
+ # Convert to PyTorch format
171
+ dataset.set_format(type="torch", columns=["image_path", "image_title", "segmentation_masks"])
172
+
173
+ # Create DataLoader
174
+ dataloader = DataLoader(dataset, batch_size=16, shuffle=True)
175
+ ```
176
+
177
+ ### TensorFlow
178
+
179
+ ```python
180
+ import tensorflow as tf
181
+ from datasets import load_dataset
182
+
183
+ # Load dataset
184
+ dataset = load_dataset("Dataseeds/GuruShots-Sample-Dataset-GSD", split="train")
185
+
186
+ # Convert to TensorFlow Dataset
187
+ tf_dataset = dataset.to_tf_dataset(
188
+ columns=["image_path", "image_title"],
189
+ batch_size=16,
190
+ shuffle=True
191
+ )
192
+ ```
193
+
194
+ ## Dataset Characterization
195
+
196
+ **Data Collection Method**: Manual curation from GuruShots photography platform
197
+
198
+ **Labeling Method**: Human annotators with multi-tier verification process
199
+
200
+ ## Benchmark Results
201
+
202
+ To validate the impact of data quality, we fine-tuned two state-of-the-art vision-language models—**LLaVA-NEXT** and **BLIP2**—on the GSD scene description task. We observed consistent and measurable improvements over base models:
203
+
204
+ ### LLaVA-NEXT Results
205
+
206
+ | Model | BLEU-4 | ROUGE-L | BERTScore F1 | CLIPScore |
207
+ |-------|--------|---------|--------------|-----------|
208
+ | Base | 0.0199 | 0.2089 | 0.2751 | 0.3247 |
209
+ | Fine-tuned | 0.0246 | 0.2140 | 0.2789 | 0.3260 |
210
+ | **Relative Improvement** | **+24.09%** | **+2.44%** | **+1.40%** | **+0.41%** |
211
+
212
+ ### BLIP2 Results
213
+
214
+ | Model | BLEU-4 | ROUGE-L | BERTScore F1 | CLIPScore |
215
+ |-------|--------|---------|--------------|-----------|
216
+ | Base | 0.001 | 0.126 | 0.0545 | 0.2854 |
217
+ | Fine-tuned | 0.047 | 0.242 | -0.0537 | 0.2583 |
218
+ | **Relative Improvement** | **+4600%** | **+92.06%** | -198.53% | -9.49% |
219
+
220
+ These improvements demonstrate the dataset's value in improving scene understanding and textual grounding of visual features, especially in fine-grained photographic tasks.
221
+
222
+ ## Use Cases
223
+
224
+ The GSD is perfect for fine-tuning multimodal models for:
225
+
226
+ * **Image captioning** - Rich human-written descriptions
227
+ * **Scene description** - Technical photography analysis
228
+ * **Semantic segmentation** - Pixel-level object understanding
229
+ * **Aesthetic evaluation** - Style classification based on peer rankings
230
+ * **EXIF-aware analysis** - Technical metadata integration
231
+ * **Multimodal training** - Vision-language model development
232
+
233
+ ## Commercial Dataset Access & On-Demand Licensing
234
+
235
+ While the GSD is being released under an open source license, it represents only a small fraction of the broader commercial capabilities of the GuruShots ecosystem.
236
+
237
+ GuruShots operates a live, ongoing photography game that has amassed over 100 million images in its catalog, sourced from both amateur and professional photographers participating in thousands of themed challenges across diverse geographic and stylistic contexts. Unlike most public datasets, this corpus is:
238
+
239
+ * Fully licensed for downstream use in AI training
240
+ * Backed by structured consent frameworks and traceable rights, with active opt-in from creators
241
+ * Rich in EXIF metadata, including camera model, lens type, and occasionally location data
242
+ * Curated through a built-in human preference signal based on competitive ranking, yielding rare insight into subjective aesthetic quality
243
+
244
+ ### On-Demand Dataset Creation
245
+
246
+ Uniquely, GuruShots has the ability to source new image datasets to spec via a just-in-time, first-party data acquisition engine. Clients (e.g. AI labs, model developers, media companies) can request:
247
+
248
+ * Specific content themes (e.g., "urban decay at dusk," "elderly people with dogs in snowy environments")
249
+ * Defined technical attributes (camera type, exposure time, geographic constraints)
250
+ * Ethical/region-specific filtering (e.g., GDPR-compliant imagery, no identifiable faces, kosher food imagery)
251
+ * Matching segmentation masks, EXIF metadata, and tiered annotations
252
+
253
+ Within days, the GuruShots platform can launch curated challenges to its global network of contributors and deliver targeted datasets with commercial-grade licensing terms.
254
+
255
+ ### Sales Inquiries
256
+
257
+ To inquire about licensing or customized dataset sourcing, contact:
258
259
+
260
+ ## License & Citation
261
+
262
+ **License**: Apache 2.0
263
+
264
+ **For commercial licenses, annotation, or access to the full 100M+ image catalog with on-demand annotations**: [[email protected]](mailto:[email protected])
265
+
266
+ ### Citation
267
+
268
+ If you find the data useful, please cite: