File size: 4,106 Bytes
4a5e053
 
97737e5
4a5e053
 
 
 
 
 
 
 
 
f476ec8
 
 
 
 
97737e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd289c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a5e053
 
 
 
 
f476ec8
 
97737e5
 
 
 
0dd289c
 
 
 
18791b0
 
 
 
4a5e053
92a74cd
 
 
 
 
 
 
 
 
 
 
 
 
 
370c7e7
92a74cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c1f110
92a74cd
 
 
 
 
 
1c1f110
 
92a74cd
1c1f110
 
 
 
92a74cd
1c1f110
 
 
 
 
92a74cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
---
dataset_info:
- config_name: default
  features:
  - name: utterance
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 406785
    num_examples: 8954
  - name: test
    num_bytes: 49545
    num_examples: 1076
  download_size: 199496
  dataset_size: 456330
- config_name: intents
  features:
  - name: id
    dtype: int64
  - name: name
    dtype: string
  - name: tags
    sequence: 'null'
  - name: regexp_full_match
    sequence: 'null'
  - name: regexp_partial_match
    sequence: 'null'
  - name: description
    dtype: 'null'
  splits:
  - name: intents
    num_bytes: 2422
    num_examples: 64
  download_size: 4037
  dataset_size: 2422
- config_name: intentsqwen3-32b
  features:
  - name: id
    dtype: int64
  - name: name
    dtype: string
  - name: tags
    sequence: 'null'
  - name: regex_full_match
    sequence: 'null'
  - name: regex_partial_match
    sequence: 'null'
  - name: description
    dtype: string
  splits:
  - name: intents
    num_bytes: 6360
    num_examples: 64
  download_size: 6559
  dataset_size: 6360
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
- config_name: intents
  data_files:
  - split: intents
    path: intents/intents-*
- config_name: intentsqwen3-32b
  data_files:
  - split: intents
    path: intentsqwen3-32b/intents-*
task_categories:
- text-classification
language:
- en
---

# hwu64

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html).

## Usage

It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
from autointent import Dataset

hwu64 = Dataset.from_hub("AutoIntent/hwu64")
```

## Source

This dataset is taken from original work's github repository `jianguoz/Few-Shot-Intent-Detection` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):

```python
# define utils
import requests
from autointent import Dataset

def load_text_from_url(github_file: str):
    return requests.get(github_file).text

def convert_hwu64(hwu_utterances, hwu_labels):
    intent_names = sorted(set(hwu_labels))
    name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))
    n_classes = len(intent_names)

    assert len(hwu_utterances) == len(hwu_labels)

    classwise_utterance_records = [[] for _ in range(n_classes)]
    intents = [
        {
            "id": i,
            "name": name,
            
        }
        for i, name in enumerate(intent_names)
    ]

    for txt, name in zip(hwu_utterances, hwu_labels, strict=False):
        intent_id = name_to_id[name]
        target_list = classwise_utterance_records[intent_id]
        target_list.append({"utterance": txt, "label": intent_id})

    utterances = [rec for lst in classwise_utterance_records for rec in lst]
    return {"intents": intents, split: utterances}

# load
file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/train/label"
labels = load_text_from_url(file_url).split("\n")[:-1]
file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/train/seq.in"
utterances = load_text_from_url(file_url).split("\n")[:-1]
# convert
hwu64_train = convert_hwu64(utterances, labels, "train")

file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/test/label"
labels = load_text_from_url(file_url).split("\n")[:-1]
file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/test/seq.in"
utterances = load_text_from_url(file_url).split("\n")[:-1]
# convert
hwu64_test = convert_hwu64(utterances, labels, "test")

hwu64_train["test"] = hwu64_test["test"]
dataset = Dataset.from_dict(hwu64_train)

```