voorhs commited on
Commit
fe31301
·
verified ·
1 Parent(s): 5d0cf9d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -21
README.md CHANGED
@@ -73,34 +73,44 @@ snips = Dataset.from_datasets("AutoIntent/snips")
73
  This dataset is taken from `benayas/snips` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
74
 
75
  ```python
76
- # define util
 
 
77
  from datasets import load_dataset
 
78
  from autointent import Dataset
 
 
79
 
80
- def convert_snips(snips_train):
81
- intent_names = sorted(snips_train.unique("category"))
82
  name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))
83
- n_classes = len(intent_names)
84
-
85
- classwise_utterance_records = [[] for _ in range(n_classes)]
86
- intents = [
87
- {
88
- "id": i,
89
- "name": name,
90
- }
91
- for i, name in enumerate(intent_names)
92
- ]
93
-
94
- for batch in snips_train.iter(batch_size=16, drop_last_batch=False):
95
  for txt, name in zip(batch["text"], batch["category"], strict=False):
96
  intent_id = name_to_id[name]
97
- target_list = classwise_utterance_records[intent_id]
98
  target_list.append({"utterance": txt, "label": intent_id})
99
 
100
- utterances = [rec for lst in classwise_utterance_records for rec in lst]
101
- return Dataset.from_dict({"intents": intents, "train": utterances})
 
 
 
 
 
 
 
 
102
 
103
- # load and format
104
- snips = load_dataset("benayas/snips")
105
- snips_converted = convert_snips(snips["train"])
106
  ```
 
73
  This dataset is taken from `benayas/snips` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html):
74
 
75
  ```python
76
+ """Convert snips dataset to autointent internal format and scheme.""" # noqa: INP001
77
+
78
+ from datasets import Dataset as HFDataset
79
  from datasets import load_dataset
80
+
81
  from autointent import Dataset
82
+ from autointent.schemas import Intent, Sample
83
+
84
 
85
+ def _extract_intents_data(split: HFDataset) -> tuple[dict[str, int], list[Intent]]:
86
+ intent_names = sorted(split.unique("category"))
87
  name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))
88
+
89
+ return name_to_id, [Intent(id=i, name=name) for i, name in enumerate(intent_names)]
90
+
91
+
92
+ def convert_snips(split: HFDataset, name_to_id: dict[str, int]) -> list[Sample]:
93
+ """Convert one split into desired format."""
94
+ n_classes = len(name_to_id)
95
+
96
+ classwise_samples = [[] for _ in range(n_classes)]
97
+
98
+ for batch in split.iter(batch_size=16, drop_last_batch=False):
 
99
  for txt, name in zip(batch["text"], batch["category"], strict=False):
100
  intent_id = name_to_id[name]
101
+ target_list = classwise_samples[intent_id]
102
  target_list.append({"utterance": txt, "label": intent_id})
103
 
104
+ return [Sample(**sample) for samples_from_one_class in classwise_samples for sample in samples_from_one_class]
105
+
106
+
107
+ if __name__ == "__main__":
108
+ snips = load_dataset("benayas/snips")
109
+
110
+ name_to_id, intents_data = _extract_intents_data(snips["train"])
111
+
112
+ train_samples = convert_snips(snips["train"], name_to_id)
113
+ test_samples = convert_snips(snips["test"], name_to_id)
114
 
115
+ dataset = Dataset.from_dict({"train": train_samples, "test": test_samples, "intents": intents_data})
 
 
116
  ```