import random import pandas as pd from tqdm import tqdm from sklearn.model_selection import train_test_split df = pd.read_parquet('gemago2_dataset.parquet') texts = [] for _, row in tqdm(df.iterrows(), desc="row", leave=False, total=len(df)): texts.append(rf"{row['korean']}\n\n<{row['language']}>{row['target']}") texts.append(rf"<{row['language']}>{row['target']}\n\n{row['korean']}") del df train_texts, test_texts = train_test_split(texts, test_size=0.2, random_state=42) del texts random.shuffle(test_texts) with open("test.txt", "w", encoding="UTF-8") as f: f.write("\n".join(test_texts)) del test_texts random.shuffle(train_texts) with open("train.txt", "w", encoding="UTF-8") as f: f.write("\n".join(train_texts)) del train_texts # gemago2_dataset_final