Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,223 Bytes
d3ae82e
 
11f08fd
 
 
 
 
 
 
 
 
 
585cff1
11f08fd
 
 
 
 
 
 
 
 
 
 
485f8b2
 
 
 
 
 
11f08fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485f8b2
11f08fd
485f8b2
 
126f061
 
 
 
d3ae82e
90569d8
1595e54
90569d8
1595e54
 
90569d8
 
 
126f061
90569d8
48211a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90569d8
1595e54
90569d8
bfae1d4
90569d8
bfae1d4
 
 
 
b5bbc6b
 
33d27eb
 
 
b5bbc6b
bfae1d4
90569d8
b7ddf34
 
 
 
 
 
 
 
90569d8
 
1595e54
90569d8
 
 
126f061
90569d8
126f061
 
 
 
 
b81f3f3
 
126f061
 
b81f3f3
b7ddf34
126f061
 
b81f3f3
 
126f061
b7ddf34
33d27eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ddf34
126f061
b7ddf34
 
 
48211a9
90569d8
bfae1d4
90569d8
bfae1d4
90569d8
bfae1d4
90569d8
bfae1d4
90569d8
bfae1d4
90569d8
422eea0
0fd1c10
 
 
 
 
 
422eea0
90569d8
bfae1d4
90569d8
bfae1d4
90569d8
bfae1d4
90569d8
bfae1d4
 
 
 
 
 
 
 
 
 
90569d8
bfae1d4
90569d8
bfae1d4
 
 
 
 
 
 
 
 
 
 
 
 
90569d8
bfae1d4
90569d8
bfae1d4
 
 
 
 
 
 
 
90569d8
bfae1d4
90569d8
bfae1d4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
---
license: bsd-3-clause
dataset_info:
  features:
  - name: cond_exp_y
    dtype: float64
  - name: m1
    dtype: float64
  - name: g1
    dtype: float64
  - name: l1
    dtype: float64
  - name: Y
    dtype: float64
  - name: D_1
    dtype: float64
  - name: carat
    dtype: float64
  - name: depth
    dtype: float64
  - name: table
    dtype: float64
  - name: price
    dtype: float64
  - name: x
    dtype: float64
  - name: y
    dtype: float64
  - name: z
    dtype: float64
  - name: review
    dtype: string
  - name: sentiment
    dtype: string
  - name: label
    dtype: int64
  - name: cut_Good
    dtype: bool
  - name: cut_Ideal
    dtype: bool
  - name: cut_Premium
    dtype: bool
  - name: cut_Very Good
    dtype: bool
  - name: color_E
    dtype: bool
  - name: color_F
    dtype: bool
  - name: color_G
    dtype: bool
  - name: color_H
    dtype: bool
  - name: color_I
    dtype: bool
  - name: color_J
    dtype: bool
  - name: clarity_IF
    dtype: bool
  - name: clarity_SI1
    dtype: bool
  - name: clarity_SI2
    dtype: bool
  - name: clarity_VS1
    dtype: bool
  - name: clarity_VS2
    dtype: bool
  - name: clarity_VVS1
    dtype: bool
  - name: clarity_VVS2
    dtype: bool
  - name: image
    dtype: image
  splits:
  - name: train
    num_bytes: 185209908.0
    num_examples: 50000
  download_size: 174280492
  dataset_size: 185209908.0
tags:
- Causal Inference
size_categories:
- 10K<n<100K
---

# Dataset Card

Semi-synthetic dataset with multimodal confounding.
The dataset is generated according to the description in [DoubleMLDeep: Estimation of Causal Effects with Multimodal Data](https://arxiv.org/abs/2402.01785).

## Dataset Details

### Dataset Description & Usage

The dataset is a semi-synthetic dataset as a benchmark for treatment effect estimation with multimodal confounding. The outcome
variable `Y` is generated according to a partially linear model
$$
Y = \theta_0 D_1 + g_1(X) + \varepsilon
$$
with an constant treatment effect of
$$\theta_0=0.5.$$
The target variables `sentiment`, `label` and `price` are used to generate credible confounding by affecting both `Y` and `D_1`.
This confounding is generated to be negative, such that estimates of the treatment effect should generally be smaller than `0.5`.

For a more detailed description on the data generating process, see [DoubleMLDeep: Estimation of Causal Effects with Multimodal Data](https://arxiv.org/abs/2402.01785).

The dataset includes the corresponding  target variables `sentiment`, `label`, `price` and oracle values such as `cond_exp_y`, `l1`, `m1`, `g1`.
These values are included for convenience for e.g. benchmarking against optimal estimates, but should not be used in the model.
Further, several tabular features are highly correlated, such that it may be helpful to drop features such as `x`, `y`, `z`.

An example looks as follows:

```
{'cond_exp_y': 2.367230022801451,
 'm1': -2.7978920933712907,
 'g1': 4.015536418538365,
 'l1': 2.61659037185272,
 'Y': 3.091541535115522,
 'D_1': -3.2966127914738275,
 'carat': 0.5247285289349821,
 'depth': 58.7,
 'table': 59.0,
 'price': 9.7161333532141,
 'x': 7.87,
 'y': 7.78,
 'z': 4.59,
 'review': "I really liked this Summerslam due to the look of the arena, the curtains and just the look overall was interesting to me for some reason. Anyways, this could have been one of the best Summerslam's ever if the WWF didn't have Lex Luger in the main event against Yokozuna, now for it's time it was ok to have a huge fat man vs a strong man but I'm glad times have changed. It was a terrible main event just like every match Luger is in is terrible. Other matches on the card were Razor Ramon vs Ted Dibiase, Steiner Brothers vs Heavenly Bodies, Shawn Michaels vs Curt Hening, this was the event where Shawn named his big monster of a body guard Diesel, IRS vs 1-2-3 Kid, Bret Hart first takes on Doink then takes on Jerry Lawler and stuff with the Harts and Lawler was always very interesting, then Ludvig Borga destroyed Marty Jannetty, Undertaker took on Giant Gonzalez in another terrible match, The Smoking Gunns and Tatanka took on Bam Bam Bigelow and the Headshrinkers, and Yokozuna defended the world title against Lex Luger this match was boring and it has a terrible ending. However it deserves 8/10",
 'sentiment': 'positive',
 'label': 6,
 'cut_Good': False,
 'cut_Ideal': False,
 'cut_Premium': True,
 'cut_Very Good': False,
 'color_E': False,
 'color_F': True,
 'color_G': False,
 'color_H': False,
 'color_I': False,
 'color_J': False,
 'clarity_IF': False,
 'clarity_SI1': False,
 'clarity_SI2': False,
 'clarity_VS1': False,
 'clarity_VS2': True,
 'clarity_VVS1': False,
 'clarity_VVS2': False,
 'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32>}
```

### Dataset Sources

The dataset is based on the three commonly used datasets:

 - [Diamonds dataset](https://www.kaggle.com/datasets/shivam2503/diamonds)
 - [IMDB dataset](https://huggingface.co/datasets/imdb)
 - [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html)

The versions to create this dataset can be found on Kaggle:

 - [Diamonds dataset (Kaggle)](https://www.kaggle.com/datasets/shivam2503/diamonds)
 - [IMDB dataset (Kaggle)](https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews?select=IMDB+Dataset.csv)
 - [CIFAR-10 dataset (Kaggle)](https://www.kaggle.com/datasets/swaroopkml/cifar10-pngs-in-folders)

The original citations can be found below.

### Dataset Preprocessing

All datasets are subsampled to be of equal size (`50,000`). The CIFAR-10 data is based on the trainings dataset, whereas the IMDB data contains train and test data
to obtain  `50,000`  observations. The labels of the CIFAR-10 data are set to integer values `0` to `9`.
The Diamonds dataset is cleaned (values with `x`, `y`, `z` equal to `0` are removed) and outliers are dropped (such that `45<depth<75`, `40<table<80`, `x<30`, `y<30` and `2<z<30`).
The remaining  `53,907`  observations are downsampled to the same size of `50,000` observations. Further `price` and `carat` are transformed with the natural logarithm and `cut`,
`color` and `clarity` are dummy coded (with baselines `Fair`, `D` and `I1`).

## Uses

The dataset should as a benchmark to compare different causal inference methods for observational data under multimodal confounding.

## Dataset Structure

### Data Instances

### Data Fields

The data fields can be devided into several categories:

- **Outcome and Treatments**
  - `Y` (`float64`): Outcome of interest
  - `D_1` (`float64`): Treatment value

- **Text Features**
  - `review` (`string`): IMDB review text
  - `sentiment` (`string`): Corresponding sentiment, either `positive` or `negative`

- **Image Features**
  - `image` (`image`): Image
  - `label` (`int64`): Corresponding label from `0` to `9`

- **Tabular Features**
  - `price` (`float64`): Logarithm of the price in US dollars
  - `carat` (`float64`): Logarithm of the weight of the diamond
  - `x` (`float64`): Length in mm
  - `y` (`float64`): Width in mm
  - `z` (`float64`): Depth in mm
  - `depth` (`float64`): Total depth percentage
  - `table` (`float64`): Width of top of diamond relative to widest point
  - **Cut**: Quality of the cut (`Fair`, `Good`, `Very Good`, `Premium`, `Ideal`) (dummy coded with `Fair` as baseline)
    - `cut_Good` (`bool`)
    - `cut_Very Good` (`bool`)
    - `cut_Premium` (`bool`)
    - `cut_Ideal` (`bool`)
  - **Color**: Diamond color, from `J`(worst) to `D`(best) (dummy coded with `D` as baseline)
    - `color_E` (`bool`)
    - `color_F` (`bool`)
    - `color_G` (`bool`)
    - `color_H` (`bool`)
    - `color_I` (`bool`)
    - `color_J` (`bool`)
  - **Clarity**: Measurement of diamond clarity (`I1` (worst), `SI2`, `SI1`, `VS2`, `VS1`, `VVS2`, `VVS1`, `IF` (best)) (dummy coded with `I1` as baseline)
    - `clarity_SI2` (`bool`)
    - `clarity_SI1` (`bool`)
    - `clarity_VS2` (`bool`)
    - `clarity_VS1` (`bool`)
    - `clarity_VVS2` (`bool`)
    - `clarity_VVS1` (`bool`)
    - `clarity_IF` (`bool`)

- **Oracle Features**
  - `cond_exp_y` (`float64`): Expected value of `Y` conditional on `D_1`, `sentiment`, `label` and `price`
  - `l1` (`float64`): Expected value of `Y` conditional on `sentiment`, `label` and `price`
  - `m1` (`float64`): Expected value of `D_1` conditional on `sentiment`, `label` and `price`
  - `g1` (`float64`): Additive component of `Y` based on `sentiment`, `label` and `price` (see Dataset Description)

## Limitations

As the confounding is generated via original labels, completely removing the confounding might not be possible.

## Citation Information

### Dataset Citation

If you use the dataset please cite this article:

```
@article{klaassen2024doublemldeep,
  title={DoubleMLDeep: Estimation of Causal Effects with Multimodal Data},
  author={Klaassen, Sven and Teichert-Kluge, Jan and Bach, Philipp and Chernozhukov, Victor and Spindler, Martin and Vijaykumar, Suhas},
  journal={arXiv preprint arXiv:2402.01785},
  year={2024}
}
```

### Dataset Sources

The three original datasets can be cited via

Diamonds dataset:

```
@Book{ggplot2_book,
  author = {Hadley Wickham},
  title = {ggplot2: Elegant Graphics for Data Analysis},
  publisher = {Springer-Verlag New York},
  year = {2016},
  isbn = {978-3-319-24277-4},
  url = {https://ggplot2.tidyverse.org},
}
```

IMDB dataset:

```
@InProceedings{maas-EtAl:2011:ACL-HLT2011,
  author    = {Maas, Andrew L.  and  Daly, Raymond E.  and  Pham, Peter T.  and  Huang, Dan  and  Ng, Andrew Y.  and  Potts, Christopher},
  title     = {Learning Word Vectors for Sentiment Analysis},
  booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
  month     = {June},
  year      = {2011},
  address   = {Portland, Oregon, USA},
  publisher = {Association for Computational Linguistics},
  pages     = {142--150},
  url       = {http://www.aclweb.org/anthology/P11-1015}
}
```

CIFAR-10 dataset:

```
@TECHREPORT{Krizhevsky09learningmultiple,
    author = {Alex Krizhevsky},
    title = {Learning multiple layers of features from tiny images},
    institution = {},
    year = {2009}
}
```

## Dataset Card Authors

Sven Klaassen