Upload 2 files
Browse files- MantraGSC.py +411 -0
- test_mantra_gsc.py +8 -0
MantraGSC.py
ADDED
|
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import ast
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from itertools import product
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from typing import Dict, List, Tuple
|
| 21 |
+
|
| 22 |
+
import datasets
|
| 23 |
+
|
| 24 |
+
_CITATION = """\
|
| 25 |
+
@article{10.1093/jamia/ocv037,
|
| 26 |
+
author = {Kors, Jan A and Clematide, Simon and Akhondi,
|
| 27 |
+
Saber A and van Mulligen, Erik M and Rebholz-Schuhmann, Dietrich},
|
| 28 |
+
title = "{A multilingual gold-standard corpus for biomedical concept recognition: the Mantra GSC}",
|
| 29 |
+
journal = {Journal of the American Medical Informatics Association},
|
| 30 |
+
volume = {22},
|
| 31 |
+
number = {5},
|
| 32 |
+
pages = {948-956},
|
| 33 |
+
year = {2015},
|
| 34 |
+
month = {05},
|
| 35 |
+
abstract = "{Objective To create a multilingual gold-standard corpus for biomedical concept recognition.Materials
|
| 36 |
+
and methods We selected text units from different parallel corpora (Medline abstract titles, drug labels,
|
| 37 |
+
biomedical patent claims) in English, French, German, Spanish, and Dutch. Three annotators per language
|
| 38 |
+
independently annotated the biomedical concepts, based on a subset of the Unified Medical Language System and
|
| 39 |
+
covering a wide range of semantic groups. To reduce the annotation workload, automatically generated
|
| 40 |
+
preannotations were provided. Individual annotations were automatically harmonized and then adjudicated, and
|
| 41 |
+
cross-language consistency checks were carried out to arrive at the final annotations.Results The number of final
|
| 42 |
+
annotations was 5530. Inter-annotator agreement scores indicate good agreement (median F-score 0.79), and are
|
| 43 |
+
similar to those between individual annotators and the gold standard. The automatically generated harmonized
|
| 44 |
+
annotation set for each language performed equally well as the best annotator for that language.Discussion The use
|
| 45 |
+
of automatic preannotations, harmonized annotations, and parallel corpora helped to keep the manual annotation
|
| 46 |
+
efforts manageable. The inter-annotator agreement scores provide a reference standard for gauging the performance
|
| 47 |
+
of automatic annotation techniques.Conclusion To our knowledge, this is the first gold-standard corpus for
|
| 48 |
+
biomedical concept recognition in languages other than English. Other distinguishing features are the wide variety
|
| 49 |
+
of semantic groups that are being covered, and the diversity of text genres that were annotated.}",
|
| 50 |
+
issn = {1067-5027},
|
| 51 |
+
doi = {10.1093/jamia/ocv037},
|
| 52 |
+
url = {https://doi.org/10.1093/jamia/ocv037},
|
| 53 |
+
eprint = {https://academic.oup.com/jamia/article-pdf/22/5/948/34146393/ocv037.pdf},
|
| 54 |
+
}
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
_DESCRIPTION = """\
|
| 58 |
+
We selected text units from different parallel corpora (Medline abstract titles, drug labels, biomedical patent claims)
|
| 59 |
+
in English, French, German, Spanish, and Dutch. Three annotators per language independently annotated the biomedical
|
| 60 |
+
concepts, based on a subset of the Unified Medical Language System and covering a wide range of semantic groups.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
_HOMEPAGE = "https://biosemantics.erasmusmc.nl/index.php/resources/mantra-gsc"
|
| 64 |
+
|
| 65 |
+
_LICENSE = "CC_BY_4p0"
|
| 66 |
+
|
| 67 |
+
_URL = "http://biosemantics.org/MantraGSC/Mantra-GSC.zip"
|
| 68 |
+
|
| 69 |
+
_LANGUAGES_2 = {
|
| 70 |
+
"es": "Spanish",
|
| 71 |
+
"fr": "French",
|
| 72 |
+
"de": "German",
|
| 73 |
+
"nl": "Dutch",
|
| 74 |
+
"en": "English",
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
_DATASET_TYPES = {
|
| 78 |
+
"emea": "EMEA",
|
| 79 |
+
"medline": "Medline",
|
| 80 |
+
"patents": "Patents",
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
@dataclass
|
| 84 |
+
class DrBenchmarkConfig(datasets.BuilderConfig):
|
| 85 |
+
name: str = None
|
| 86 |
+
version: datasets.Version = None
|
| 87 |
+
description: str = None
|
| 88 |
+
schema: str = None
|
| 89 |
+
subset_id: str = None
|
| 90 |
+
|
| 91 |
+
class MantraGSC(datasets.GeneratorBasedBuilder):
|
| 92 |
+
|
| 93 |
+
SOURCE_VERSION = datasets.Version("1.0.0")
|
| 94 |
+
|
| 95 |
+
BUILDER_CONFIGS = []
|
| 96 |
+
|
| 97 |
+
for language, dataset_type in product(_LANGUAGES_2, _DATASET_TYPES):
|
| 98 |
+
|
| 99 |
+
if dataset_type == "patents" and language in ["nl", "es"]:
|
| 100 |
+
continue
|
| 101 |
+
|
| 102 |
+
BUILDER_CONFIGS.append(
|
| 103 |
+
DrBenchmarkConfig(
|
| 104 |
+
name=f"{language}_{dataset_type}",
|
| 105 |
+
version=SOURCE_VERSION,
|
| 106 |
+
description=f"Mantra GSC {_LANGUAGES_2[language]} {_DATASET_TYPES[dataset_type]} source schema",
|
| 107 |
+
schema="source",
|
| 108 |
+
subset_id=f"{language}_{_DATASET_TYPES[dataset_type]}",
|
| 109 |
+
)
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
DEFAULT_CONFIG_NAME = "fr_medline"
|
| 113 |
+
|
| 114 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 115 |
+
|
| 116 |
+
if self.config.schema == "source":
|
| 117 |
+
features = datasets.Features(
|
| 118 |
+
{
|
| 119 |
+
"document_id": datasets.Value("string"),
|
| 120 |
+
"text": datasets.Value("string"),
|
| 121 |
+
"entities": [
|
| 122 |
+
{
|
| 123 |
+
"entity_id": datasets.Value("string"),
|
| 124 |
+
"type": datasets.Value("string"),
|
| 125 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 126 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 127 |
+
"cui": datasets.Value("string"),
|
| 128 |
+
"preferred_term": datasets.Value("string"),
|
| 129 |
+
"semantic_type": datasets.Value("string"),
|
| 130 |
+
"normalized": [
|
| 131 |
+
{
|
| 132 |
+
"db_name": datasets.Value("string"),
|
| 133 |
+
"db_id": datasets.Value("string"),
|
| 134 |
+
}
|
| 135 |
+
],
|
| 136 |
+
}
|
| 137 |
+
],
|
| 138 |
+
}
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
return datasets.DatasetInfo(
|
| 142 |
+
description=_DESCRIPTION,
|
| 143 |
+
features=features,
|
| 144 |
+
homepage=_HOMEPAGE,
|
| 145 |
+
license=str(_LICENSE),
|
| 146 |
+
citation=_CITATION,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
| 150 |
+
|
| 151 |
+
print("1 - " + "*"*50)
|
| 152 |
+
print(_URL)
|
| 153 |
+
data_dir = dl_manager.download_and_extract(_URL)
|
| 154 |
+
|
| 155 |
+
print("2 - " + "*"*50)
|
| 156 |
+
data_dir = Path(data_dir) / "Mantra-GSC"
|
| 157 |
+
|
| 158 |
+
print("3 - " + "*"*50)
|
| 159 |
+
language, dataset_type = self.config.name.split("_")
|
| 160 |
+
|
| 161 |
+
print("4 - " + "*"*50)
|
| 162 |
+
return [
|
| 163 |
+
datasets.SplitGenerator(
|
| 164 |
+
name=datasets.Split.TRAIN,
|
| 165 |
+
gen_kwargs={
|
| 166 |
+
"data_dir": data_dir,
|
| 167 |
+
"language": language,
|
| 168 |
+
"dataset_type": dataset_type,
|
| 169 |
+
},
|
| 170 |
+
),
|
| 171 |
+
]
|
| 172 |
+
|
| 173 |
+
def remove_prefix(self, a: str, prefix: str) -> str:
|
| 174 |
+
if a.startswith(prefix):
|
| 175 |
+
a = a[len(prefix) :]
|
| 176 |
+
return a
|
| 177 |
+
|
| 178 |
+
def parse_brat_file(self, txt_file: Path, annotation_file_suffixes: List[str] = None, parse_notes: bool = False) -> Dict:
|
| 179 |
+
|
| 180 |
+
example = {}
|
| 181 |
+
example["document_id"] = txt_file.with_suffix("").name
|
| 182 |
+
with txt_file.open() as f:
|
| 183 |
+
example["text"] = f.read()
|
| 184 |
+
|
| 185 |
+
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
| 186 |
+
# for event extraction
|
| 187 |
+
if annotation_file_suffixes is None:
|
| 188 |
+
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
| 189 |
+
|
| 190 |
+
if len(annotation_file_suffixes) == 0:
|
| 191 |
+
raise AssertionError(
|
| 192 |
+
"At least one suffix for the to-be-read annotation files should be given!"
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
ann_lines = []
|
| 196 |
+
for suffix in annotation_file_suffixes:
|
| 197 |
+
annotation_file = txt_file.with_suffix(suffix)
|
| 198 |
+
if annotation_file.exists():
|
| 199 |
+
with annotation_file.open() as f:
|
| 200 |
+
ann_lines.extend(f.readlines())
|
| 201 |
+
|
| 202 |
+
example["text_bound_annotations"] = []
|
| 203 |
+
example["events"] = []
|
| 204 |
+
example["relations"] = []
|
| 205 |
+
example["equivalences"] = []
|
| 206 |
+
example["attributes"] = []
|
| 207 |
+
example["normalizations"] = []
|
| 208 |
+
|
| 209 |
+
if parse_notes:
|
| 210 |
+
example["notes"] = []
|
| 211 |
+
|
| 212 |
+
for line in ann_lines:
|
| 213 |
+
line = line.strip()
|
| 214 |
+
if not line:
|
| 215 |
+
continue
|
| 216 |
+
|
| 217 |
+
if line.startswith("T"): # Text bound
|
| 218 |
+
ann = {}
|
| 219 |
+
fields = line.split("\t")
|
| 220 |
+
|
| 221 |
+
ann["id"] = fields[0]
|
| 222 |
+
ann["type"] = fields[1].split()[0]
|
| 223 |
+
ann["offsets"] = []
|
| 224 |
+
span_str = self.remove_prefix(fields[1], (ann["type"] + " "))
|
| 225 |
+
text = fields[2]
|
| 226 |
+
for span in span_str.split(";"):
|
| 227 |
+
start, end = span.split()
|
| 228 |
+
ann["offsets"].append([int(start), int(end)])
|
| 229 |
+
|
| 230 |
+
# Heuristically split text of discontiguous entities into chunks
|
| 231 |
+
ann["text"] = []
|
| 232 |
+
if len(ann["offsets"]) > 1:
|
| 233 |
+
i = 0
|
| 234 |
+
for start, end in ann["offsets"]:
|
| 235 |
+
chunk_len = end - start
|
| 236 |
+
ann["text"].append(text[i : chunk_len + i])
|
| 237 |
+
i += chunk_len
|
| 238 |
+
while i < len(text) and text[i] == " ":
|
| 239 |
+
i += 1
|
| 240 |
+
else:
|
| 241 |
+
ann["text"] = [text]
|
| 242 |
+
|
| 243 |
+
example["text_bound_annotations"].append(ann)
|
| 244 |
+
|
| 245 |
+
elif line.startswith("E"):
|
| 246 |
+
ann = {}
|
| 247 |
+
fields = line.split("\t")
|
| 248 |
+
|
| 249 |
+
ann["id"] = fields[0]
|
| 250 |
+
|
| 251 |
+
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
| 252 |
+
|
| 253 |
+
ann["arguments"] = []
|
| 254 |
+
for role_ref_id in fields[1].split()[1:]:
|
| 255 |
+
argument = {
|
| 256 |
+
"role": (role_ref_id.split(":"))[0],
|
| 257 |
+
"ref_id": (role_ref_id.split(":"))[1],
|
| 258 |
+
}
|
| 259 |
+
ann["arguments"].append(argument)
|
| 260 |
+
|
| 261 |
+
example["events"].append(ann)
|
| 262 |
+
|
| 263 |
+
elif line.startswith("R"):
|
| 264 |
+
ann = {}
|
| 265 |
+
fields = line.split("\t")
|
| 266 |
+
|
| 267 |
+
ann["id"] = fields[0]
|
| 268 |
+
ann["type"] = fields[1].split()[0]
|
| 269 |
+
|
| 270 |
+
ann["head"] = {
|
| 271 |
+
"role": fields[1].split()[1].split(":")[0],
|
| 272 |
+
"ref_id": fields[1].split()[1].split(":")[1],
|
| 273 |
+
}
|
| 274 |
+
ann["tail"] = {
|
| 275 |
+
"role": fields[1].split()[2].split(":")[0],
|
| 276 |
+
"ref_id": fields[1].split()[2].split(":")[1],
|
| 277 |
+
}
|
| 278 |
+
|
| 279 |
+
example["relations"].append(ann)
|
| 280 |
+
|
| 281 |
+
# '*' seems to be the legacy way to mark equivalences,
|
| 282 |
+
# but I couldn't find any info on the current way
|
| 283 |
+
# this might have to be adapted dependent on the brat version
|
| 284 |
+
# of the annotation
|
| 285 |
+
elif line.startswith("*"):
|
| 286 |
+
ann = {}
|
| 287 |
+
fields = line.split("\t")
|
| 288 |
+
|
| 289 |
+
ann["id"] = fields[0]
|
| 290 |
+
ann["ref_ids"] = fields[1].split()[1:]
|
| 291 |
+
|
| 292 |
+
example["equivalences"].append(ann)
|
| 293 |
+
|
| 294 |
+
elif line.startswith("A") or line.startswith("M"):
|
| 295 |
+
ann = {}
|
| 296 |
+
fields = line.split("\t")
|
| 297 |
+
|
| 298 |
+
ann["id"] = fields[0]
|
| 299 |
+
|
| 300 |
+
info = fields[1].split()
|
| 301 |
+
ann["type"] = info[0]
|
| 302 |
+
ann["ref_id"] = info[1]
|
| 303 |
+
|
| 304 |
+
if len(info) > 2:
|
| 305 |
+
ann["value"] = info[2]
|
| 306 |
+
else:
|
| 307 |
+
ann["value"] = ""
|
| 308 |
+
|
| 309 |
+
example["attributes"].append(ann)
|
| 310 |
+
|
| 311 |
+
elif line.startswith("N"):
|
| 312 |
+
ann = {}
|
| 313 |
+
fields = line.split("\t")
|
| 314 |
+
|
| 315 |
+
ann["id"] = fields[0]
|
| 316 |
+
ann["text"] = fields[2]
|
| 317 |
+
|
| 318 |
+
info = fields[1].split()
|
| 319 |
+
|
| 320 |
+
ann["type"] = info[0]
|
| 321 |
+
ann["ref_id"] = info[1]
|
| 322 |
+
ann["resource_name"] = info[2].split(":")[0]
|
| 323 |
+
ann["cuid"] = info[2].split(":")[1]
|
| 324 |
+
example["normalizations"].append(ann)
|
| 325 |
+
|
| 326 |
+
elif parse_notes and line.startswith("#"):
|
| 327 |
+
ann = {}
|
| 328 |
+
fields = line.split("\t")
|
| 329 |
+
|
| 330 |
+
ann["id"] = fields[0]
|
| 331 |
+
ann["text"] = fields[2] if len(fields) == 3 else "<BB_NULL_STR>"
|
| 332 |
+
|
| 333 |
+
info = fields[1].split()
|
| 334 |
+
|
| 335 |
+
ann["type"] = info[0]
|
| 336 |
+
ann["ref_id"] = info[1]
|
| 337 |
+
example["notes"].append(ann)
|
| 338 |
+
|
| 339 |
+
return example
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def _generate_examples(
|
| 343 |
+
self, data_dir: Path, language: str, dataset_type: str
|
| 344 |
+
) -> Tuple[int, Dict]:
|
| 345 |
+
"""Yields examples as (key, example) tuples."""
|
| 346 |
+
data_dir = data_dir / f"{_LANGUAGES_2[language]}"
|
| 347 |
+
|
| 348 |
+
if dataset_type in ["patents", "emea"]:
|
| 349 |
+
data_dir = data_dir / f"{_DATASET_TYPES[dataset_type]}_ec22-cui-best_man"
|
| 350 |
+
else:
|
| 351 |
+
# It is Medline now
|
| 352 |
+
if language != "en":
|
| 353 |
+
data_dir = (
|
| 354 |
+
data_dir
|
| 355 |
+
/ f"{_DATASET_TYPES[dataset_type]}_EN_{language.upper()}_ec22-cui-best_man"
|
| 356 |
+
)
|
| 357 |
+
else:
|
| 358 |
+
data_dir = [
|
| 359 |
+
data_dir
|
| 360 |
+
/ f"{_DATASET_TYPES[dataset_type]}_EN_{_lang.upper()}_ec22-cui-best_man"
|
| 361 |
+
for _lang in _LANGUAGES_2
|
| 362 |
+
if _lang != "en"
|
| 363 |
+
]
|
| 364 |
+
|
| 365 |
+
if not isinstance(data_dir, list):
|
| 366 |
+
data_dir: List[Path] = [data_dir]
|
| 367 |
+
|
| 368 |
+
raw_files = [raw_file for _dir in data_dir for raw_file in _dir.glob("*.txt")]
|
| 369 |
+
|
| 370 |
+
if self.config.schema == "source":
|
| 371 |
+
for i, raw_file in enumerate(raw_files):
|
| 372 |
+
brat_example = self.parse_brat_file(raw_file, parse_notes=True)
|
| 373 |
+
source_example = self._to_source_example(brat_example)
|
| 374 |
+
yield i, source_example
|
| 375 |
+
|
| 376 |
+
def _to_source_example(self, brat_example: Dict) -> Dict:
|
| 377 |
+
|
| 378 |
+
source_example = {
|
| 379 |
+
"document_id": brat_example["document_id"],
|
| 380 |
+
"text": brat_example["text"],
|
| 381 |
+
}
|
| 382 |
+
|
| 383 |
+
source_example["entities"] = []
|
| 384 |
+
|
| 385 |
+
for entity_annotation, ann_notes in zip(
|
| 386 |
+
brat_example["text_bound_annotations"], brat_example["notes"]
|
| 387 |
+
):
|
| 388 |
+
entity_ann = entity_annotation.copy()
|
| 389 |
+
|
| 390 |
+
# Change id property name
|
| 391 |
+
entity_ann["entity_id"] = entity_ann["id"]
|
| 392 |
+
entity_ann.pop("id")
|
| 393 |
+
|
| 394 |
+
# Get values from annotator notes
|
| 395 |
+
assert entity_ann["entity_id"] == ann_notes["ref_id"]
|
| 396 |
+
notes_values = ast.literal_eval(ann_notes["text"])
|
| 397 |
+
if len(notes_values) == 4:
|
| 398 |
+
cui, preferred_term, semantic_type, semantic_group = notes_values
|
| 399 |
+
else:
|
| 400 |
+
preferred_term, semantic_type, semantic_group = notes_values
|
| 401 |
+
cui = entity_ann["type"]
|
| 402 |
+
entity_ann["cui"] = cui
|
| 403 |
+
entity_ann["preferred_term"] = preferred_term
|
| 404 |
+
entity_ann["semantic_type"] = semantic_type
|
| 405 |
+
entity_ann["type"] = semantic_group
|
| 406 |
+
entity_ann["normalized"] = [{"db_name": "UMLS", "db_id": cui}]
|
| 407 |
+
|
| 408 |
+
# Add entity annotation to sample
|
| 409 |
+
source_example["entities"].append(entity_ann)
|
| 410 |
+
|
| 411 |
+
return source_example
|
test_mantra_gsc.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
dataset = load_dataset("./MantraGSC.py", name="fr_emea")
|
| 6 |
+
print(dataset)
|
| 7 |
+
# print(dataset["train"][0])
|
| 8 |
+
print(json.dumps(dataset["train"][0], sort_keys=True, indent=4))
|