Datasets:
Add dataloader for full SourceData (including entity links) (#4)
Browse files- Add dataloader for full SourceData (including entity links) (0367281d98d9e4c81a2bb98caf2f621fb4f6bbc0)
Co-authored-by: David Kartchner <[email protected]>
- SourceData.py +217 -46
SourceData.py
CHANGED
|
@@ -19,10 +19,12 @@
|
|
| 19 |
from __future__ import absolute_import, division, print_function
|
| 20 |
|
| 21 |
import json
|
|
|
|
| 22 |
import datasets
|
| 23 |
|
| 24 |
_BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/"
|
| 25 |
|
|
|
|
| 26 |
class SourceData(datasets.GeneratorBasedBuilder):
|
| 27 |
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
|
| 28 |
|
|
@@ -45,19 +47,26 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 45 |
"B-DISEASE",
|
| 46 |
"I-DISEASE",
|
| 47 |
"B-CELL_LINE",
|
| 48 |
-
"I-CELL_LINE"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
]
|
| 50 |
-
_SEMANTIC_ROLES = ["O", "B-CONTROLLED_VAR", "I-CONTROLLED_VAR", "B-MEASURED_VAR", "I-MEASURED_VAR"]
|
| 51 |
_PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
|
| 52 |
_ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]
|
| 53 |
|
| 54 |
_CITATION = """\
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
| 61 |
"""
|
| 62 |
|
| 63 |
_DESCRIPTION = """\
|
|
@@ -70,32 +79,73 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 70 |
|
| 71 |
DEFAULT_CONFIG_NAME = "NER"
|
| 72 |
|
| 73 |
-
_LATEST_VERSION = "
|
| 74 |
|
| 75 |
def _info(self):
|
| 76 |
-
VERSION =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
self._URLS = {
|
| 78 |
"NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
|
| 79 |
"PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
|
| 80 |
"ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
|
| 81 |
"ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
|
| 82 |
"ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
}
|
| 84 |
self.BUILDER_CONFIGS = [
|
| 85 |
-
datasets.BuilderConfig(
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
]
|
| 91 |
-
|
| 92 |
if self.config.name in ["NER", "default"]:
|
| 93 |
features = datasets.Features(
|
| 94 |
{
|
| 95 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
| 96 |
"labels": datasets.Sequence(
|
| 97 |
-
feature=datasets.ClassLabel(
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
),
|
| 100 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
| 101 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
@@ -109,7 +159,7 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 109 |
"labels": datasets.Sequence(
|
| 110 |
feature=datasets.ClassLabel(
|
| 111 |
num_classes=len(self._SEMANTIC_ROLES),
|
| 112 |
-
names=self._SEMANTIC_ROLES
|
| 113 |
)
|
| 114 |
),
|
| 115 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
|
@@ -124,7 +174,7 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 124 |
"labels": datasets.Sequence(
|
| 125 |
feature=datasets.ClassLabel(
|
| 126 |
num_classes=len(self._SEMANTIC_ROLES),
|
| 127 |
-
names=self._SEMANTIC_ROLES
|
| 128 |
)
|
| 129 |
),
|
| 130 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
|
@@ -139,13 +189,12 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 139 |
"labels": datasets.Sequence(
|
| 140 |
feature=datasets.ClassLabel(
|
| 141 |
num_classes=len(self._SEMANTIC_ROLES),
|
| 142 |
-
names=self._SEMANTIC_ROLES
|
| 143 |
)
|
| 144 |
),
|
| 145 |
"is_category": datasets.Sequence(
|
| 146 |
feature=datasets.ClassLabel(
|
| 147 |
-
num_classes=len(self._ROLES_MULTI),
|
| 148 |
-
names=self._ROLES_MULTI
|
| 149 |
)
|
| 150 |
),
|
| 151 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
@@ -157,13 +206,57 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 157 |
{
|
| 158 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
| 159 |
"labels": datasets.Sequence(
|
| 160 |
-
feature=datasets.ClassLabel(
|
| 161 |
-
|
|
|
|
|
|
|
| 162 |
),
|
| 163 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
| 164 |
}
|
| 165 |
)
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
return datasets.DatasetInfo(
|
| 168 |
description=self._DESCRIPTION,
|
| 169 |
features=features,
|
|
@@ -172,38 +265,49 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 172 |
license=self._LICENSE,
|
| 173 |
citation=self._CITATION,
|
| 174 |
)
|
| 175 |
-
|
| 176 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 177 |
"""Returns SplitGenerators.
|
| 178 |
-
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url.
|
|
|
|
| 179 |
|
| 180 |
try:
|
| 181 |
config_name = self.config.name if self.config.name != "default" else "NER"
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
except:
|
| 189 |
raise ValueError(f"unkonwn config name: {self.config.name}")
|
| 190 |
-
|
| 191 |
return [
|
| 192 |
datasets.SplitGenerator(
|
| 193 |
name=datasets.Split.TRAIN,
|
| 194 |
# These kwargs will be passed to _generate_examples
|
| 195 |
-
gen_kwargs={
|
| 196 |
-
"filepath": data_files[0]},
|
| 197 |
),
|
| 198 |
datasets.SplitGenerator(
|
| 199 |
name=datasets.Split.TEST,
|
| 200 |
-
gen_kwargs={
|
| 201 |
-
"filepath": data_files[1]},
|
| 202 |
),
|
| 203 |
datasets.SplitGenerator(
|
| 204 |
name=datasets.Split.VALIDATION,
|
| 205 |
-
gen_kwargs={
|
| 206 |
-
"filepath": data_files[2]},
|
| 207 |
),
|
| 208 |
]
|
| 209 |
|
|
@@ -212,40 +316,45 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 212 |
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
| 213 |
The key is not important, it's more here for legacy reason (legacy from tfds)"""
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
with open(filepath, encoding="utf-8") as f:
|
| 216 |
# logger.info("⏳ Generating examples from = %s", filepath)
|
| 217 |
for id_, row in enumerate(f):
|
| 218 |
-
data = json.loads(row)
|
| 219 |
if self.config.name in ["NER", "default"]:
|
| 220 |
yield id_, {
|
| 221 |
"words": data["words"],
|
| 222 |
"labels": data["labels"],
|
| 223 |
"tag_mask": data["is_category"],
|
| 224 |
-
"text": data["text"]
|
| 225 |
}
|
| 226 |
elif self.config.name == "ROLES_GP":
|
| 227 |
yield id_, {
|
| 228 |
"words": data["words"],
|
| 229 |
"labels": data["labels"],
|
| 230 |
"tag_mask": data["is_category"],
|
| 231 |
-
"text": data["text"]
|
| 232 |
}
|
| 233 |
elif self.config.name == "ROLES_MULTI":
|
| 234 |
labels = data["labels"]
|
| 235 |
-
tag_mask = [1 if t!=0 else 0 for t in labels]
|
| 236 |
yield id_, {
|
| 237 |
"words": data["words"],
|
| 238 |
"labels": data["labels"],
|
| 239 |
"tag_mask": tag_mask,
|
| 240 |
"is_category": data["is_category"],
|
| 241 |
-
"text": data["text"]
|
| 242 |
}
|
| 243 |
elif self.config.name == "ROLES_SM":
|
| 244 |
yield id_, {
|
| 245 |
"words": data["words"],
|
| 246 |
"labels": data["labels"],
|
| 247 |
"tag_mask": data["is_category"],
|
| 248 |
-
"text": data["text"]
|
| 249 |
}
|
| 250 |
elif self.config.name == "PANELIZATION":
|
| 251 |
labels = data["labels"]
|
|
@@ -256,4 +365,66 @@ class SourceData(datasets.GeneratorBasedBuilder):
|
|
| 256 |
"tag_mask": tag_mask,
|
| 257 |
}
|
| 258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
|
|
|
| 19 |
from __future__ import absolute_import, division, print_function
|
| 20 |
|
| 21 |
import json
|
| 22 |
+
import os
|
| 23 |
import datasets
|
| 24 |
|
| 25 |
_BASE_URL = "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/"
|
| 26 |
|
| 27 |
+
|
| 28 |
class SourceData(datasets.GeneratorBasedBuilder):
|
| 29 |
"""SourceDataNLP provides datasets to train NLP tasks in cell and molecular biology."""
|
| 30 |
|
|
|
|
| 47 |
"B-DISEASE",
|
| 48 |
"I-DISEASE",
|
| 49 |
"B-CELL_LINE",
|
| 50 |
+
"I-CELL_LINE",
|
| 51 |
+
]
|
| 52 |
+
_SEMANTIC_ROLES = [
|
| 53 |
+
"O",
|
| 54 |
+
"B-CONTROLLED_VAR",
|
| 55 |
+
"I-CONTROLLED_VAR",
|
| 56 |
+
"B-MEASURED_VAR",
|
| 57 |
+
"I-MEASURED_VAR",
|
| 58 |
]
|
|
|
|
| 59 |
_PANEL_START_NAMES = ["O", "B-PANEL_START", "I-PANEL_START"]
|
| 60 |
_ROLES_MULTI = ["O", "GENEPROD", "SMALL_MOLECULE"]
|
| 61 |
|
| 62 |
_CITATION = """\
|
| 63 |
+
@article{abreu2023sourcedata,
|
| 64 |
+
title={The SourceData-NLP dataset: integrating curation into scientific publishing
|
| 65 |
+
for training large language models},
|
| 66 |
+
author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas},
|
| 67 |
+
journal={arXiv preprint arXiv:2310.20440},
|
| 68 |
+
year={2023}
|
| 69 |
+
}
|
| 70 |
"""
|
| 71 |
|
| 72 |
_DESCRIPTION = """\
|
|
|
|
| 79 |
|
| 80 |
DEFAULT_CONFIG_NAME = "NER"
|
| 81 |
|
| 82 |
+
_LATEST_VERSION = "2.0.3" # Should this be updated to 2.0.3
|
| 83 |
|
| 84 |
def _info(self):
|
| 85 |
+
VERSION = (
|
| 86 |
+
self.config.version
|
| 87 |
+
if self.config.version not in ["0.0.0", "latest"]
|
| 88 |
+
else self._LATEST_VERSION
|
| 89 |
+
)
|
| 90 |
self._URLS = {
|
| 91 |
"NER": f"{_BASE_URL}token_classification/v_{VERSION}/ner/",
|
| 92 |
"PANELIZATION": f"{_BASE_URL}token_classification/v_{VERSION}/panelization/",
|
| 93 |
"ROLES_GP": f"{_BASE_URL}token_classification/v_{VERSION}/roles_gene/",
|
| 94 |
"ROLES_SM": f"{_BASE_URL}token_classification/v_{VERSION}/roles_small_mol/",
|
| 95 |
"ROLES_MULTI": f"{_BASE_URL}token_classification/v_{VERSION}/roles_multi/",
|
| 96 |
+
"FULL": os.path.join(
|
| 97 |
+
_BASE_URL,
|
| 98 |
+
"bigbio",
|
| 99 |
+
# f"v_{VERSION}",
|
| 100 |
+
),
|
| 101 |
}
|
| 102 |
self.BUILDER_CONFIGS = [
|
| 103 |
+
datasets.BuilderConfig(
|
| 104 |
+
name="NER",
|
| 105 |
+
version=VERSION,
|
| 106 |
+
description="Dataset for named-entity recognition.",
|
| 107 |
+
),
|
| 108 |
+
datasets.BuilderConfig(
|
| 109 |
+
name="PANELIZATION",
|
| 110 |
+
version=VERSION,
|
| 111 |
+
description="Dataset to separate figure captions into panels.",
|
| 112 |
+
),
|
| 113 |
+
datasets.BuilderConfig(
|
| 114 |
+
name="ROLES_GP",
|
| 115 |
+
version=VERSION,
|
| 116 |
+
description="Dataset for semantic roles of gene products.",
|
| 117 |
+
),
|
| 118 |
+
datasets.BuilderConfig(
|
| 119 |
+
name="ROLES_SM",
|
| 120 |
+
version=VERSION,
|
| 121 |
+
description="Dataset for semantic roles of small molecules.",
|
| 122 |
+
),
|
| 123 |
+
datasets.BuilderConfig(
|
| 124 |
+
name="ROLES_MULTI",
|
| 125 |
+
version=VERSION,
|
| 126 |
+
description="Dataset to train roles. ROLES_GP and ROLES_SM at once.",
|
| 127 |
+
),
|
| 128 |
+
datasets.BuilderConfig(
|
| 129 |
+
name="FULL",
|
| 130 |
+
version=VERSION,
|
| 131 |
+
description="Full dataset including all NER + entity linking annotations, links to figure images, etc.",
|
| 132 |
+
),
|
| 133 |
+
# datasets.BuilderConfig(
|
| 134 |
+
# name="BIGBIO_KB",
|
| 135 |
+
# version=VERSION,
|
| 136 |
+
# description="Full dataset formatted according to BigBio KB schema (see https://huggingface.co/bigbio). Includes all NER + entity linking annotations.",
|
| 137 |
+
# ),
|
| 138 |
]
|
| 139 |
+
|
| 140 |
if self.config.name in ["NER", "default"]:
|
| 141 |
features = datasets.Features(
|
| 142 |
{
|
| 143 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
| 144 |
"labels": datasets.Sequence(
|
| 145 |
+
feature=datasets.ClassLabel(
|
| 146 |
+
num_classes=len(self._NER_LABEL_NAMES),
|
| 147 |
+
names=self._NER_LABEL_NAMES,
|
| 148 |
+
)
|
| 149 |
),
|
| 150 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
| 151 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
|
| 159 |
"labels": datasets.Sequence(
|
| 160 |
feature=datasets.ClassLabel(
|
| 161 |
num_classes=len(self._SEMANTIC_ROLES),
|
| 162 |
+
names=self._SEMANTIC_ROLES,
|
| 163 |
)
|
| 164 |
),
|
| 165 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
|
| 174 |
"labels": datasets.Sequence(
|
| 175 |
feature=datasets.ClassLabel(
|
| 176 |
num_classes=len(self._SEMANTIC_ROLES),
|
| 177 |
+
names=self._SEMANTIC_ROLES,
|
| 178 |
)
|
| 179 |
),
|
| 180 |
# "is_category": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
|
| 189 |
"labels": datasets.Sequence(
|
| 190 |
feature=datasets.ClassLabel(
|
| 191 |
num_classes=len(self._SEMANTIC_ROLES),
|
| 192 |
+
names=self._SEMANTIC_ROLES,
|
| 193 |
)
|
| 194 |
),
|
| 195 |
"is_category": datasets.Sequence(
|
| 196 |
feature=datasets.ClassLabel(
|
| 197 |
+
num_classes=len(self._ROLES_MULTI), names=self._ROLES_MULTI
|
|
|
|
| 198 |
)
|
| 199 |
),
|
| 200 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
|
|
|
| 206 |
{
|
| 207 |
"words": datasets.Sequence(feature=datasets.Value("string")),
|
| 208 |
"labels": datasets.Sequence(
|
| 209 |
+
feature=datasets.ClassLabel(
|
| 210 |
+
num_classes=len(self._PANEL_START_NAMES),
|
| 211 |
+
names=self._PANEL_START_NAMES,
|
| 212 |
+
)
|
| 213 |
),
|
| 214 |
"tag_mask": datasets.Sequence(feature=datasets.Value("int8")),
|
| 215 |
}
|
| 216 |
)
|
| 217 |
|
| 218 |
+
elif self.config.name == "FULL":
|
| 219 |
+
features = datasets.Features(
|
| 220 |
+
{
|
| 221 |
+
"doi": datasets.Value("string"),
|
| 222 |
+
"abstract": datasets.Value("string"),
|
| 223 |
+
# "split": datasets.Value("string"),
|
| 224 |
+
"figures": [
|
| 225 |
+
{
|
| 226 |
+
"fig_id": datasets.Value("string"),
|
| 227 |
+
"label": datasets.Value("string"),
|
| 228 |
+
"fig_graphic_url": datasets.Value("string"),
|
| 229 |
+
"panels": [
|
| 230 |
+
{
|
| 231 |
+
"panel_id": datasets.Value("string"),
|
| 232 |
+
"text": datasets.Value("string"),
|
| 233 |
+
"panel_graphic_url": datasets.Value("string"),
|
| 234 |
+
"entities": [
|
| 235 |
+
{
|
| 236 |
+
"annotation_id": datasets.Value("string"),
|
| 237 |
+
"source": datasets.Value("string"),
|
| 238 |
+
"category": datasets.Value("string"),
|
| 239 |
+
"entity_type": datasets.Value("string"),
|
| 240 |
+
"role": datasets.Value("string"),
|
| 241 |
+
"text": datasets.Value("string"),
|
| 242 |
+
"ext_ids": datasets.Value("string"),
|
| 243 |
+
"norm_text": datasets.Value("string"),
|
| 244 |
+
"ext_dbs": datasets.Value("string"),
|
| 245 |
+
"in_caption": datasets.Value("bool"),
|
| 246 |
+
"ext_names": datasets.Value("string"),
|
| 247 |
+
"ext_tax_ids": datasets.Value("string"),
|
| 248 |
+
"ext_tax_names": datasets.Value("string"),
|
| 249 |
+
"ext_urls": datasets.Value("string"),
|
| 250 |
+
"offsets": [datasets.Value("int64")],
|
| 251 |
+
}
|
| 252 |
+
],
|
| 253 |
+
}
|
| 254 |
+
],
|
| 255 |
+
}
|
| 256 |
+
],
|
| 257 |
+
}
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
return datasets.DatasetInfo(
|
| 261 |
description=self._DESCRIPTION,
|
| 262 |
features=features,
|
|
|
|
| 265 |
license=self._LICENSE,
|
| 266 |
citation=self._CITATION,
|
| 267 |
)
|
| 268 |
+
|
| 269 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
| 270 |
"""Returns SplitGenerators.
|
| 271 |
+
Uses local files if a data_dir is specified. Otherwise downloads the files from their official url.
|
| 272 |
+
"""
|
| 273 |
|
| 274 |
try:
|
| 275 |
config_name = self.config.name if self.config.name != "default" else "NER"
|
| 276 |
+
|
| 277 |
+
if config_name == "FULL":
|
| 278 |
+
url = os.path.join(
|
| 279 |
+
self._URLS[config_name],
|
| 280 |
+
# "source_data_full.zip"
|
| 281 |
+
"source_data_json_splits_2.0.2.zip",
|
| 282 |
+
)
|
| 283 |
+
data_dir = dl_manager.download_and_extract(url)
|
| 284 |
+
data_files = [
|
| 285 |
+
os.path.join(data_dir, filename)
|
| 286 |
+
for filename in ["train.jsonl", "test.jsonl", "validation.jsonl"]
|
| 287 |
+
]
|
| 288 |
+
else:
|
| 289 |
+
urls = [
|
| 290 |
+
os.path.join(self._URLS[config_name], "train.jsonl"),
|
| 291 |
+
os.path.join(self._URLS[config_name], "test.jsonl"),
|
| 292 |
+
os.path.join(self._URLS[config_name], "validation.jsonl"),
|
| 293 |
+
]
|
| 294 |
+
data_files = dl_manager.download(urls)
|
| 295 |
except:
|
| 296 |
raise ValueError(f"unkonwn config name: {self.config.name}")
|
| 297 |
+
|
| 298 |
return [
|
| 299 |
datasets.SplitGenerator(
|
| 300 |
name=datasets.Split.TRAIN,
|
| 301 |
# These kwargs will be passed to _generate_examples
|
| 302 |
+
gen_kwargs={"filepath": data_files[0]},
|
|
|
|
| 303 |
),
|
| 304 |
datasets.SplitGenerator(
|
| 305 |
name=datasets.Split.TEST,
|
| 306 |
+
gen_kwargs={"filepath": data_files[1]},
|
|
|
|
| 307 |
),
|
| 308 |
datasets.SplitGenerator(
|
| 309 |
name=datasets.Split.VALIDATION,
|
| 310 |
+
gen_kwargs={"filepath": data_files[2]},
|
|
|
|
| 311 |
),
|
| 312 |
]
|
| 313 |
|
|
|
|
| 316 |
It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
| 317 |
The key is not important, it's more here for legacy reason (legacy from tfds)"""
|
| 318 |
|
| 319 |
+
no_panels = 0
|
| 320 |
+
no_entities = 0
|
| 321 |
+
has_panels = 0
|
| 322 |
+
has_entities = 0
|
| 323 |
+
|
| 324 |
with open(filepath, encoding="utf-8") as f:
|
| 325 |
# logger.info("⏳ Generating examples from = %s", filepath)
|
| 326 |
for id_, row in enumerate(f):
|
| 327 |
+
data = json.loads(row.strip())
|
| 328 |
if self.config.name in ["NER", "default"]:
|
| 329 |
yield id_, {
|
| 330 |
"words": data["words"],
|
| 331 |
"labels": data["labels"],
|
| 332 |
"tag_mask": data["is_category"],
|
| 333 |
+
"text": data["text"],
|
| 334 |
}
|
| 335 |
elif self.config.name == "ROLES_GP":
|
| 336 |
yield id_, {
|
| 337 |
"words": data["words"],
|
| 338 |
"labels": data["labels"],
|
| 339 |
"tag_mask": data["is_category"],
|
| 340 |
+
"text": data["text"],
|
| 341 |
}
|
| 342 |
elif self.config.name == "ROLES_MULTI":
|
| 343 |
labels = data["labels"]
|
| 344 |
+
tag_mask = [1 if t != 0 else 0 for t in labels]
|
| 345 |
yield id_, {
|
| 346 |
"words": data["words"],
|
| 347 |
"labels": data["labels"],
|
| 348 |
"tag_mask": tag_mask,
|
| 349 |
"is_category": data["is_category"],
|
| 350 |
+
"text": data["text"],
|
| 351 |
}
|
| 352 |
elif self.config.name == "ROLES_SM":
|
| 353 |
yield id_, {
|
| 354 |
"words": data["words"],
|
| 355 |
"labels": data["labels"],
|
| 356 |
"tag_mask": data["is_category"],
|
| 357 |
+
"text": data["text"],
|
| 358 |
}
|
| 359 |
elif self.config.name == "PANELIZATION":
|
| 360 |
labels = data["labels"]
|
|
|
|
| 365 |
"tag_mask": tag_mask,
|
| 366 |
}
|
| 367 |
|
| 368 |
+
elif self.config.name == "FULL":
|
| 369 |
+
doc_figs = data["figures"]
|
| 370 |
+
all_figures = []
|
| 371 |
+
for fig in doc_figs:
|
| 372 |
+
all_panels = []
|
| 373 |
+
figure = {
|
| 374 |
+
"fig_id": fig["fig_id"],
|
| 375 |
+
"label": fig["label"],
|
| 376 |
+
"fig_graphic_url": fig["fig_graphic_url"],
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
for p in fig["panels"]:
|
| 380 |
+
panel = {
|
| 381 |
+
"panel_id": p["panel_id"],
|
| 382 |
+
"text": p["text"].strip(),
|
| 383 |
+
"panel_graphic_url": p["panel_graphic_url"],
|
| 384 |
+
"entities": [
|
| 385 |
+
{
|
| 386 |
+
"annotation_id": t["tag_id"],
|
| 387 |
+
"source": t["source"],
|
| 388 |
+
"category": t["category"],
|
| 389 |
+
"entity_type": t["entity_type"],
|
| 390 |
+
"role": t["role"],
|
| 391 |
+
"text": t["text"],
|
| 392 |
+
"ext_ids": t["ext_ids"],
|
| 393 |
+
"norm_text": t["norm_text"],
|
| 394 |
+
"ext_dbs": t["ext_dbs"],
|
| 395 |
+
"in_caption": bool(t["in_caption"]),
|
| 396 |
+
"ext_names": t["ext_names"],
|
| 397 |
+
"ext_tax_ids": t["ext_tax_ids"],
|
| 398 |
+
"ext_tax_names": t["ext_tax_names"],
|
| 399 |
+
"ext_urls": t["ext_urls"],
|
| 400 |
+
"offsets": t["local_offsets"],
|
| 401 |
+
}
|
| 402 |
+
for t in p["tags"]
|
| 403 |
+
],
|
| 404 |
+
}
|
| 405 |
+
for e in panel["entities"]:
|
| 406 |
+
assert type(e["offsets"]) == list
|
| 407 |
+
if len(panel["entities"]) == 0:
|
| 408 |
+
no_entities += 1
|
| 409 |
+
continue
|
| 410 |
+
else:
|
| 411 |
+
has_entities += 1
|
| 412 |
+
all_panels.append(panel)
|
| 413 |
+
|
| 414 |
+
figure["panels"] = all_panels
|
| 415 |
+
|
| 416 |
+
# Pass on all figures that aren't split into panels
|
| 417 |
+
if len(all_panels) == 0:
|
| 418 |
+
no_panels += 1
|
| 419 |
+
continue
|
| 420 |
+
else:
|
| 421 |
+
has_panels += 1
|
| 422 |
+
all_figures.append(figure)
|
| 423 |
+
|
| 424 |
+
output = {
|
| 425 |
+
"doi": data["doi"],
|
| 426 |
+
"abstract": data["abstract"],
|
| 427 |
+
"figures": all_figures,
|
| 428 |
+
}
|
| 429 |
+
yield id_, output
|
| 430 |
|