text
stringlengths
20
57.3k
labels
class label
4 classes
Title: [BUG] The learning rate scheduler is being ignored in the first optimization step. Body: **Describe the bug** It appears that no matter how the learning rate scheduler is configured, during the first training step a learning rate of `1e-3` is always used. My understanding is that this happens because `lr_scheduler.step()` is always called after `optimizer.step()` and there is no initialization for the initial step learning rate. I'm currently using `optimizer.set_lr(0)` explicitly to work around this issue. It can be quite detrimental to full fine-tuning of LLMs (as opposed to just LoRA/PEFT training) as it throws the model off completely in the first training step. Is this intentional? If so, should this be fixed inside DeepSpeed or are we supposed to just use `optimizer.set_lr(0)` like I'm currently doing. In either case, I think this should be documented somewhere as it is somewhat surprising behavior. **To Reproduce** It's pretty easy to reproduce with any configuration you already have. I was using this when debugging and finding this out: ``` "optimizer": { "type": "AdamW", "params": { "betas": [0.9, 0.98], "eps": 1e-6, "weight_decay": 3e-6, }, }, "scheduler": { "type": "WarmupDecayLR", "params": { "warmup_min_lr": 0, "warmup_max_lr": 1e-4, "warmup_num_steps": 100, "total_num_steps": 1000, }, } ```
2hard
Title: Error when using session- or module- scoped fixtures and fixture unions. Body: While trying to solve this : https://stackoverflow.com/questions/46909275/parametrizing-tests-depending-of-also-parametrized-values-in-pytest I found out that my proposal with union fixtures was not working correctly.
1medium
Title: Add ability to override the SocialLoginSerializer Body: In my application, I override the RegisterSerializer to do some further validation (I require users to have an invite before signing up). I'd like to do the same thing with social logins, but currently there is no way to override the SocialLoginSerializer in my application settings the way I can with the RegisterSerializer.
1medium
Title: Serialized relationship id should be string Body: According to [JSON:API](https://jsonapi.org/format/#document-resource-object-identification), the `id` field should always be a string, but this isn't the case when fetching relationships through `SqlalchemyDataLayer`. I suspect the problem originates here: https://github.com/miLibris/flask-rest-jsonapi/blob/b4cb5576b75ffaf6463abb8952edc8839b03463f/flask_rest_jsonapi/data_layers/alchemy.py#L256 @akira-dev I would be happy to contribute with a pull request if you consider this correct.
1medium
Title: Bahdanau attention (attention mechanisms) tensorflow notebook build fails in Turkish version. Body: Currently, PR-63 (Fixing more typos) builds fail only for tensorflow notebook. I could not figure out the reason. @AnirudhDagar , I would be glad if you could take a look.
1medium
Title: 关于路径的一点建议 Body: 首先感谢大神的分享! 其次有一点点小建议,就是在组合路径时可以用os.path.join() 函数,这样就不用判断是什么操作系统,程序上看起来更加简洁
0easy
Title: Add support for new kinds of nerves: n-simplices and min-intersection. Body: Now that @michiexile abstracted a nerve class, we can include support for other nerves. Most obvious are a min-intersection nerve and an n-simplices nerve. Though I believe we will also need a custom nerve for multi-mapper and we could experiment with a multi-nerve. - [x] min-intersection - [ ] n-simplices ## min-intersection It would be nice to set a minimum number of points each cluster has to intersect on to be considered connected. ``` edges = nerve({"a": [1,2,3], "b": [2,3,4], "c": [4,5,6]}, min_intersection=2) -> ["a", "b"] in edges and ["b", "c"] not in edges ``` ## n-simplices It would be nice to have a general n-simplex nerve that constructs simplices of order n or less. Before building this, is there an established format for simplexes? Are there any libraries that we could use? Most promising simplicial complex libraries found in the wild: - [pycomplex](https://github.com/EelcoHoogendoorn/pycomplex) - [simplicial](https://github.com/simoninireland/simplicial) I'd prefer not to reinvent the wheel but I think a strong python simplicial complex library could be useful to the community.
1medium
Title: 下载的百度预训练模型,可以作为checkpoint继续进行训练吗? Body: 因为bert pytorch版本提供了language model fine tuning的方法,对预训练的model进行language model层面的fine tuning,或者可以理解为预训练模型上再次进行预训练。ERNIE模型现在只找到了下载的model直接进行fine tuning的方法,想知道有没有类似的language model fine tuning的方法。
1medium
Title: Unable to get http://storage.insightface.ai/files/models/buffalo_l.zip Body: I think http://storage.insightface.ai is down, are there any alternative links for the model from which I can download the model and set it in `/root/.insightface/models/` manually? Code: ``` from insightface.app import FaceAnalysis app = FaceAnalysis() ``` Output: ``` download_path: /root/.insightface/models/buffalo_l Downloading /root/.insightface/models/buffalo_l.zip from http://storage.insightface.ai/files/models/buffalo_l.zip... --------------------------------------------------------------------------- TimeoutError Traceback (most recent call last) /usr/local/lib/python3.7/dist-packages/urllib3/connection.py in _new_conn(self) 158 conn = connection.create_connection( --> 159 (self._dns_host, self.port), self.timeout, **extra_kw) 160 23 frames TimeoutError: [Errno 110] Connection timed out During handling of the above exception, another exception occurred: NewConnectionError Traceback (most recent call last) NewConnectionError: <urllib3.connection.HTTPConnection object at 0x7fc7b71ce910>: Failed to establish a new connection: [Errno 110] Connection timed out During handling of the above exception, another exception occurred: MaxRetryError Traceback (most recent call last) MaxRetryError: HTTPConnectionPool(host='storage.insightface.ai', port=80): Max retries exceeded with url: /files/models/buffalo_l.zip (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7fc7b71ce910>: Failed to establish a new connection: [Errno 110] Connection timed out')) During handling of the above exception, another exception occurred: ConnectionError Traceback (most recent call last) /usr/local/lib/python3.7/dist-packages/requests/adapters.py in send(self, request, stream, timeout, verify, cert, proxies) 514 raise SSLError(e, request=request) 515 --> 516 raise ConnectionError(e, request=request) 517 518 except ClosedPoolError as e: ConnectionError: HTTPConnectionPool(host='storage.insightface.ai', port=80): Max retries exceeded with url: /files/models/buffalo_l.zip (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0x7fc7b71ce910>: Failed to establish a new connection: [Errno 110] Connection timed out')) ```
1medium
Title: Is it safe to say the selection of thresholds will not affect training process at all? Body: Thanks so much for this great framework. After reading the code, I feel that the selection of threshold only appears during evaluate(), which is after the training epoch. Can I say the choice of threshold does not have any impact on the training?
1medium
Title: On MacOS ARM some tests fail because some functions return different results Body: From https://github.com/biolab/orange3/actions/runs/9317726517/job/25648607002 ``` ====================================================================== FAIL: test_max_features_reg (Orange.tests.test_random_forest.RandomForestTest.test_max_features_reg) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/runner/work/orange3/orange3/.tox/orange-released/lib/python3.11/site-packages/Orange/tests/test_random_forest.py", line 134, in test_max_features_reg self.assertGreater(diff, 1.2) AssertionError: 0.030000000000001137 not greater than 1.2 ====================================================================== FAIL: test_info (Orange.widgets.evaluate.tests.test_owpermutationplot.TestOWPermutationPlot.test_info) ---------------------------------------------------------------------- Traceback (most recent call last): File "/Users/runner/work/orange3/orange3/.tox/orange-released/lib/python3.11/site-packages/Orange/widgets/evaluate/tests/test_owpermutationplot.py", line 94, in test_info self.assertIn("0.5021", self.widget._info.text()) AssertionError: '0.5021' not found in '\n<table width=100% align="center" style="font-size:11px">\n <tr style="background:#fefefe">\n <th style="background:transparent;padding: 2px 4px"></th>\n <th style="background:transparent;padding: 2px 4px">Corr = 0</th>\n <th style="background:transparent;padding: 2px 4px">Corr = 100</th>\n </tr>\n <tr style="background:#fefefe">\n <th style="padding: 2px 4px" align=right>Train</th>\n <td style="padding: 2px 4px" align=right>0.9980</td>\n <td style="padding: 2px 4px" align=right>0.9996</td>\n </tr>\n <tr style="background:#fefefe">\n <th style="padding: 2px 4px" align=right>CV</th>\n <td style="padding: 2px 4px" align=right>0.4978</td>\n <td style="padding: 2px 4px" align=right>0.8951</td>\n </tr>\n</table>\n ' ```
2hard
Title: DOC: Pivot() example call incorrectly used and would give "error: duplicate index" Body: ### Pandas version checks - [x] I have checked that the issue still exists on the latest versions of the docs on `main` [here](https://pandas.pydata.org/docs/dev/) ### Location of the documentation doc/source/user_guide/reshaping.rst ### Documentation problem the table given as an example for pivot() is wrong and cant be used. it would return "error duplicate index" as there are duplicate values in the column given for "index" parameter. <img width="772" alt="Image" src="https://github.com/user-attachments/assets/d7198715-b74e-4c35-88f8-5a01ee8eefe4" /> ### Suggested fix for documentation The "foo" column must contain unique values
0easy
Title: Need a wheel for python 3.13 Body: When I am trying to install gensim with python 3.13, scipy is having trouble installing because it is trying to compile a new wheel but is unable to.
1medium
Title: cose-bilkent does not work Body: few issues with this https://github.com/plotly/dash-cytoscape/blob/master/demos/usage-cose-bilkent-layout.py throws an error about the conflict between serving locally and external scripts You have set your config to `serve_locally=True` but A local version of https://cdn.rawgit.com/cytoscape/cytoscape.js-cose-bilkent/d810281d/cytoscape-cose-bilkent.js is not available. If you added this file with `app.scripts.append_script` or `app.css.append_css`, use `external_scripts` or `external_stylesheets` instead. See https://dash.plotly.com/external-resources seems like you have built in 'close-bilkent' into your code somewhere instead of 'cose-bilkent' as you get an error pop up saying it is looking for 'close-bilkent' Invalid argument `layout.name` passed into Cytoscape with ID "cytoscape". Expected one of ["random","preset","circle","concentric","grid","breadthfirst","cose","close-bilkent","cola","euler","spread","dagre","klay"]. demo works if you replace the external script loading with cyto.load_extra_layouts() then replace all instances of 'close-bilkent' in the local cyto files with 'cose-bilkent'
1medium
Title: Move /test folder Body: Our `/test` folder has reached 24MB, and we need to move it outside the main `bbot` folder so it's not packaged by PyPi.
1medium
Title: Two warning tests fail Body: Running `pytest` on 1.3.13 I get the following two failed tests: ``` _____________________________________________________________________________________________________________________ test_odd_num_levels_raises_warning ______________________________________________________________________________________________________________________ setup_param_file_with_groups = '/tmp/tmphtdhaumg' def test_odd_num_levels_raises_warning(setup_param_file_with_groups): parameter_file = setup_param_file_with_groups problem = read_param_file(parameter_file) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sample(problem, 10, num_levels=3) # Verify some things > assert len(w) == 1 E assert 2 == 1 E +2 E -1 tests/sample/morris/test_morris.py:55: AssertionError _______________________________________________________________________________________________________________________ test_even_num_levels_no_warning _______________________________________________________________________________________________________________________ setup_param_file_with_groups = '/tmp/tmpiur667kp' def test_even_num_levels_no_warning(setup_param_file_with_groups): parameter_file = setup_param_file_with_groups problem = read_param_file(parameter_file) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sample(problem, 10, num_levels=4) # Verify some things > assert len(w) == 0 E assert 1 == 0 E +1 E -0 tests/sample/morris/test_morris.py:70: AssertionError ```
1medium
Title: [BUG] Opening and ending tag mismatch: meta line 3 and head Body: - [x] I've checked [docs](https://rich.readthedocs.io/en/latest/introduction.html) and [closed issues](https://github.com/Textualize/rich/issues?q=is%3Aissue+is%3Aclosed) for possible solutions. - [x] I can't find my issue in the [FAQ](https://github.com/Textualize/rich/blob/master/FAQ.md). **Describe the bug** Edit this with a clear and concise description of what the bug. ```py ansiText = "..." width = 80 console = Console(width=width, record=True, file=StringIO()) richText = text.Text.from_ansi(ansiText) console.print(richText) console.height = len(richText.wrap(console, width=width)) console.save_html(fileName) with sync_playwright() as p: install(p.chromium) browser = p.chromium.launch() page = browser.new_page() page.set_viewport_size({"width": console.width * 3, "height": console.height * 3}) page.goto(f"file:///{fileName}") page.screenshot(path=outFile, omit_background=True) browser.close() ``` Looks to be that the meta tag is not closed <meta charset="UTF-8"> ![image](https://github.com/Textualize/rich/assets/41634689/ff491241-b8bf-47ab-94bf-cebc075e27f5) Full implementation at https://github.com/FHPythonUtils/AnsiToImg/blob/master/ansitoimg/render.py **Platform** <details> <summary>Click to expand</summary> ``` ╭───────────────────────── <class 'rich.console.Console'> ─────────────────────────╮ │ A high level console interface. │ │ │ │ ╭──────────────────────────────────────────────────────────────────────────────╮ │ │ │ <console width=122 ColorSystem.TRUECOLOR> │ │ │ ╰──────────────────────────────────────────────────────────────────────────────╯ │ │ │ │ color_system = 'truecolor' │ │ encoding = 'utf-8' │ │ file = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'> │ │ height = 9 │ │ is_alt_screen = False │ │ is_dumb_terminal = False │ │ is_interactive = True │ │ is_jupyter = False │ │ is_terminal = True │ │ legacy_windows = False │ │ no_color = False │ │ options = ConsoleOptions( │ │ size=ConsoleDimensions(width=122, height=9), │ │ legacy_windows=False, │ │ min_width=1, │ │ max_width=122, │ │ is_terminal=True, │ │ encoding='utf-8', │ │ max_height=9, │ │ justify=None, │ │ overflow=None, │ │ no_wrap=False, │ │ highlight=None, │ │ markup=None, │ │ height=None │ │ ) │ │ quiet = False │ │ record = False │ │ safe_box = True │ │ size = ConsoleDimensions(width=122, height=9) │ │ soft_wrap = False │ │ stderr = False │ │ style = None │ │ tab_size = 8 │ │ width = 122 │ ╰──────────────────────────────────────────────────────────────────────────────────╯ ╭── <class 'rich._windows.WindowsConsoleFeatures'> ───╮ │ Windows features available. │ │ │ │ ╭─────────────────────────────────────────────────╮ │ │ │ WindowsConsoleFeatures(vt=True, truecolor=True) │ │ │ ╰─────────────────────────────────────────────────╯ │ │ │ │ truecolor = True │ │ vt = True │ ╰─────────────────────────────────────────────────────╯ ╭────── Environment Variables ───────╮ │ { │ │ 'TERM': None, │ │ 'COLORTERM': 'truecolor', │ │ 'CLICOLOR': None, │ │ 'NO_COLOR': None, │ │ 'TERM_PROGRAM': 'vscode', │ │ 'COLUMNS': None, │ │ 'JUPYTER_COLUMNS': None, │ │ 'JUPYTER_LINES': None, │ │ 'JPY_PARENT_PID': None, │ │ 'VSCODE_VERBOSE_LOGGING': None │ │ } │ ╰────────────────────────────────────╯ platform="Windows" rich==12.6.0 ``` </details>
1medium
Title: latest version of requests is not backwards compatible Body: Summary. ## Expected Result requests(URL, headers, payload) returns payload What you expected. ## Actual Result Error, because new version of requests does not accept 3 parameters, only 2. It causes all python programs that use requests with 3 parameters to crash and need to be reprogrammed. What happened instead. ## Reproduction Steps ```python import requests r = requests.get(URL, headers=headers, params=payload) ``` ## System Information $ python -m requests.help ``` { "chardet": { "version": "3.0.4" }, "cryptography": { "version": "" }, "idna": { "version": "2.8" }, "implementation": { "name": "CPython", "version": "3.8.10" }, "platform": { "release": "5.11.0-27-generic", "system": "Linux" }, "pyOpenSSL": { "openssl_version": "", "version": null }, "requests": { "version": "2.22.0" }, "system_ssl": { "version": "1010106f" }, "urllib3": { "version": "1.25.8" }, "using_pyopenssl": false } ``` This command is only available on Requests v2.16.4 and greater. Otherwise, please provide some basic information about your system (Python version, operating system, &c).
1medium
Title: Specify template location for ploomber scaffold Body: It would be nice to specify the template location, whether a url or local directory, when calling ploomber scaffold. ploomber scaffold --from-template https://github.com/user/my-template ploomber scaffold --from-template ~/custom_template It'd also be nice to be able to set the default template from a user / all users (when using a system install of python) like: ploomber scaffold --set-template https://github.com/user/my-template
1medium
Title: Ai voice cloning Body:
2hard
Title: 可以提供隐马维特比训练命名实体的语料格式吗? Body: <!-- 注意事项和版本号必填,否则不回复。若希望尽快得到回复,请按模板认真填写,谢谢合作。 --> ## 注意事项 请确认下列注意事项: * 我已仔细阅读下列文档,都没有找到答案: - [首页文档](https://github.com/hankcs/HanLP) - [wiki](https://github.com/hankcs/HanLP/wiki) - [常见问题](https://github.com/hankcs/HanLP/wiki/FAQ) * 我已经通过[Google](https://www.google.com/#newwindow=1&q=HanLP)和[issue区检索功能](https://github.com/hankcs/HanLP/issues)搜索了我的问题,也没有找到答案。 * 我明白开源社区是出于兴趣爱好聚集起来的自由社区,不承担任何责任或义务。我会礼貌发言,向每一个帮助我的人表示感谢。 * [x] 我在此括号内输入x打钩,代表上述事项确认完毕。 ## 版本号 <!-- 发行版请注明jar文件名去掉拓展名的部分;GitHub仓库版请注明master还是portable分支 --> 当前最新版本号是:1.7.1 我使用的版本是:1.7.1 <!--以上属于必填项,以下可自由发挥--> ## 我的问题 <!-- 请详细描述问题,越详细越可能得到解决 --> hanks你好,在你的帮助下我这边已经熟悉感知机的操作,所以现在想试试用隐马和维特比来训练新实体。 我参照wiki中的https://github.com/hankcs/HanLP/wiki/%E8%A7%92%E8%89%B2%E6%A0%87%E6%B3%A8%E5%91%BD%E5%90%8D%E5%AE%9E%E4%BD%93 进行了仿写, 但是在TestNRDctionaryMaker.java中的语料文件【"data/dictionary/2014_dictionary.txt"】和【D:\JavaProjects\CorpusToolBox\data\2014\】并没有在任何地方找到,希望可以提供该处语料所需的格式,以准备新实体的语料。 我已在relese中下载了最新的data的压缩包并没有找到对应文件,https://github.com/hankcs/HanLP/issues/311 这个issue中所提供的页面也已经找不到了。 感谢您的时间!
1medium
Title: Add support for setting httpx client options Body: ## Problem <!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] --> While running the `postgresql` integration tests on a slow connection I ran into a lot of `httpx.ReadTimeout` errors. ## Suggested solution <!-- A clear and concise description of what you want to happen. --> We should either increase the timeout option or allow users to set it themselves, maybe something like: ```py client = Client( http={ 'timeout': 10, }, ) ```
1medium
Title: Add possibility to write dictionary-style object Body: It will be useful for backward compatibility: - [v1 example](https://github.com/influxdata/influxdb-python#examples)
1medium
Title: assert_match does not fail assertion Body: **Describe the bug** `snapshot.assert_match(ANY)` always passed **To Reproduce** Steps to reproduce the behavior: 1. Replace with `snapshot.assert_match(None)` https://github.com/tophat/syrupy/blob/a5c46b15942e4d75c9470b24f3e2bfc9fa661087/tests/test_snapshots.py#L14 2. Run command `inv test` 3. See that test does not fail **Expected behavior** Should fail with the same error as `assert None == snapshot`
1medium
Title: Make convert_to_parquet CLI command create script branch Body: As proposed by @severo, maybe we should add this functionality as well to the CLI command to convert a script-dataset to Parquet. See: https://github.com/huggingface/datasets/pull/6795#discussion_r1562819168 > When providing support, we sometimes suggest that users store their script in a script branch. What do you think of this alternative to deleting the files?
1medium
Title: Profiling for HF Filesystem shows there are easy performance gains to be made Body: ### Describe the bug # Let's make it faster First, an evidence... ![image](https://github.com/huggingface/datasets/assets/159512661/a703a82c-43a0-426c-9d99-24c563d70965) Figure 1: CProfile for loading 3 files from cerebras/SlimPajama-627B train split, and 3 files from test split using streaming=True. X axis is 1106 seconds long. See? It's pretty slow. What is resolve pattern doing? ``` resolve_pattern called with **/train/** and hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543 resolve_pattern took 20.815081119537354 seconds ``` Makes sense. How to improve it? ## Bigger project, biggest payoff Databricks (and consequently, spark) store a compressed manifest file of the files contained in the remote filesystem. Then, you download one tiny file, decompress it, and all the operations are local instead of this shenanigans. It seems pretty straightforward to make dataset uploads compute a manifest and upload it alongside their data. This would make resolution time so fast that nobody would ever think about it again. It also means you either need to have the uploader compute it _every time_, or have a hook that computes it. ## Smaller project, immediate payoff: Be diligent in avoiding deepcopy Revise the _ls_tree method to avoid deepcopy: ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... for path_info in tree: if isinstance(path_info, RepoFile): cache_path_info = { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: cache_path_info = { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(cache_path_info) return copy.deepcopy(out) # copy to not let users modify the dircache ``` Observe this deepcopy at the end. It is making a copy of a very simple data structure. We do not need to copy. We can simply generate the data structure twice instead. It will be much faster. ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... def make_cache_path_info(path_info): if isinstance(path_info, RepoFile): return { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: return { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } for path_info in tree: cache_path_info = make_cache_path_info(path_info) out_cache_path_info = make_cache_path_info(path_info) # copy to not let users modify the dircache parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(out_cache_path_info) return out ``` Note there is no longer a deepcopy in this method. We have replaced it with generating the output twice. This is substantially faster. For me, the entire resolution went from 1100s to 360s. ## Medium project, medium payoff After the above change, we have this profile: ![image](https://github.com/huggingface/datasets/assets/159512661/db7b83da-2dfc-4c2e-abab-0ede9477876c) Figure 2: x-axis is 355 seconds. Note that globbing and _ls_tree deep copy is gone. No surprise there. It's much faster now, but we still spend ~187seconds in get_fs_token_paths. Well get_fs_token_paths is part of fsspec. We don't need to fix that because we can trust their developers to write high performance code. Probably the caller has misconfigured something. Let's take a look at the storage_options being provided to the filesystem that is constructed during this call. Ah yes, streaming_download_manager::_prepare_single_hop_path_and_storage_options. We know streaming download manager is not compatible with async right now, but we really need this specific part of the code to be async. We're spending so much time checking isDir on the remote filesystem, it's a huge waste. We can make the call easily 20-30x faster by using async, removing this performance bottleneck almost entirely (and reducing the total time of this part of the code to <30s. There is no reason to block async isDir calls for streaming. I'm not going to mess w/ this one myself; I didn't write the streaming impl, and I don't know how it works, but I know the isDir check can be async. ### Steps to reproduce the bug ``` with cProfile.Profile() as pr: pr.enable() # Begin Data if not os.path.exists(data_cache_dir): os.makedirs(data_cache_dir, exist_ok=True) training_dataset = load_dataset(training_dataset_name, split=training_split, cache_dir=data_cache_dir, streaming=True).take(training_slice) eval_dataset = load_dataset(eval_dataset_name, split=eval_split, cache_dir=data_cache_dir, streaming=True).take(eval_slice) # End Data pr.disable() pr.create_stats() if not os.path.exists(profiling_path): os.makedirs(profiling_path, exist_ok=True) pr.dump_stats(os.path.join(profiling_path, "cprofile.prof")) ``` run this code for "cerebras/SlimPajama-627B" and whatever other params ### Expected behavior Something better. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
1medium
Title: [CI] Update codecov configuration file Body: I've closed #990 but forget to create an issue about the codecov configuration issue. Apparently, we should have a `coverage.yml` file for the Codecov app/github-action, but I'm not sure how this will go with local coverage reports, which seems to use `.coveragerc`. This require a little investigation. The goal here is to have: - a single config file (local reports and CI) - an up-to-date configuration file (as recommended in codecov docs): - as a consequence, we can more easily customize the codecov config (if we discuss we need to)
1medium
Title: Clarify usage of yarn vs npm in contributing.md Body: Right now, it's not clear in `contributing.md` whether yarn or npm should be used. Since `yarn` was chosen to be the package manager, we should more clearly indicate that in contributing.
0easy
Title: Integrate the ITKWidgets Body: ## 🚀 Feature <!-- A clear and concise description of the feature proposal --> Integrate the itkwidgets to view 3d images ### Motivation <!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> 3d Visualization for medical images besides the slicer ### Pitch <!-- A clear and concise description of what you want to happen. --> ### Alternatives <!-- A clear and concise description of any alternative solutions or features you've considered, if any. --> ### Additional context <!-- Add any other context or screenshots about the feature request here. -->
1medium
Title: How to access an Iframe from an external source without uncaught DOMexception? Body: I have some other website I own and I want to embed html from that website as Iframes. I want to access some properties of the actual element (such as scroll height) to adjust the Iframe in dash. But I get a `Uncaught DOMException: Blocked a frame with origin "http://localhost:8050" from accessing a cross-origin frame.`, which is to be expected. In flask there's a way to whitelist other sites, is there a way to do this in Dash? thank you!
1medium
Title: management subcommand `manage_dkim_keys` breaks if it fails Body: # Impacted versions * Modoboa: 2.0.3 # Steps to reproduce # Current behavior Try this `$ python manage.py modo manage_dkim_keys` from an account that lacks write permissions for `dkim_keys_storage_dir`. It crashes, but it adds a `dkim_private_key_path` to the `admin_domain` table all the same, so that on subsequent runs, this command does nothing because the [query for missing values](https://github.com/modoboa/modoboa/blob/572e32f868c24c2f08c0d387620c58ef42ebb714/modoboa/admin/management/commands/subcommands/_manage_dkim_keys.py#L48) does not return this domain any more. So on fixing the write permissions, or running it from a privileged account, nothing happens unless you manually edit the database and inset an empty string in domain's `dkim_private_key_path`, after which a new `.pem` file is created as expected. # Expected behavior If for any reason the `.pem` file cannot be created then the associated `dkim_private_key_path` field in the `admin_domain` table should be an empty string not and invalid path (pointing to a file that does not exist). Data integrity basically.
1medium
Title: [RFC] Support multidoc yaml files Body: **Is your feature request related to a problem? Please describe.** Sometimes it can be difficult or impossible to pass multiple files with config fragments. yaml support multiple documents in one file and `safe_load_all` from pyaml api loads that accordingly. It is standard yaml feature, it would be nice to support it and make in usable in cases when passing one file (composited from more files) would be easier. **Describe the solution you'd like** Support `safe_load_all` as yaml loader. **Describe alternatives you've considered** Passing multiple files will do the work, however it doesn't have to be always straightforward. **Additional context** I have prepared a patch
1medium
Title: I suspect it's a fake interface Body: I suspect it's a fake interface ![Image](https://github.com/user-attachments/assets/fdaf9d22-72a9-4fc0-b5c2-0c6a8dd6762d)
1medium
Title: 我猜 Whole Word Masking (wwm) 实际是一种更高效的方式,字级别增加预训练时间和随机性 也能达到同样最终效果吧? Body: @ymcui 多谢!
3misc
Title: [Feat] Export grammar of plots Body: It would be really great to be able to export and import a description of the graph for later reuse, like it is done in Vega. This also relates to [[Feat] Force data types in code #70 ](https://github.com/Kanaries/pygwalker/issues/70). Besides not having to setup predefined data types every time this would enable users of PyGWalker to export predefined setup of the plots in its entirety.
2hard
Title: Running process killed abruptly Body: Hi everyone, I was running PyOD but halfway the process was apparently killed, it shows only the word "Killed". Does anyone know why it happened ? Thanks a lot.
3misc
Title: Not able to detect face Body: * face_recognition version: Latest * Python version: 3.7 * Operating System: Mac ### Description I am not able to detect a face in the below picture can someone tell me why..and it's not only about this picture it's with many of them clicked with my ONE PLUS 6 ![Amit](https://user-images.githubusercontent.com/6313300/59174501-46627880-8b6f-11e9-849f-b4086702135c.jpg) Can someone try and let me know why
1medium
Title: Make ResourceProtector extensible Body: Only BearerToken is supported currently, it is required to make the protector extensible so that we can add more token type later.
2hard
Title: Discrepancy between specified `5min` frequency and DeepAR model configuration Body: # Subject: Discrepancy between specified 'freq' and DeepAR config 'freq' Hi everyone, I'm encountering an issue where I specified `freq='5min'` during the training of a DeepAR model using AutoGluon, but the final model configuration shows `freq='D'`. I'm trying to understand why this discrepancy exists and if it could be impacting my model. ## Details from Training Logs Here are some key points from the training logs: ```plaintext =================== System Info =================== AutoGluon Version: 1.2 Python Version: 3.12.3 Operating System: Linux Platform Machine: x86_64 Platform Version: #1 SMP Tue Nov 5 00:21:55 UTC 2024 CPU Count: 16 GPU Count: 1 Memory Avail: 27.98 GB / 31.29 GB (89.4%) Disk Space Avail: 437.20 GB / 953.26 GB (45.9%) =================================================== Setting presets to: best_quality Fitting with arguments: {'enable_ensemble': True, 'eval_metric': MASE, 'excluded_model_types': ['RecursiveTabular', 'DirectTabular', 'TiDE'], 'freq': '5min', 'hyperparameters': 'default', 'known_covariates_names': ['minute_sin', 'minute_cos', 'hour_sin', 'hour_cos', 'day_of_week_sin', 'day_of_week_cos', 'is_weekend'], 'num_val_windows': 5, 'prediction_length': 30, 'quantile_levels': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], 'random_seed': 123, 'refit_every_n_windows': 2, 'refit_full': False, 'skip_model_selection': False, 'target': 'target', 'time_limit': 20000, 'verbosity': 2} Data with frequency 'None' has been resampled to frequency '5min'. The provided data has a large number of rows and several time series. The data contains a target column and the following known covariates: categorical: ['is_weekend'] continuous (float): ['minute_sin', 'minute_cos', 'hour_sin', 'hour_cos', 'day_of_week_sin', 'day_of_week_cos'] To learn how to fix incorrectly inferred types, please see documentation for TimeSeriesPredictor.fit AutoGluon will gauge predictive performance using evaluation metric: 'MASE' This metric's sign has been flipped to adhere to being higher_is_better. The metric score can be multiplied by -1 to get the metric value. =================================================== ``` And here's the relevant part of the saved DeepAR model's config: ```json { "__kind__": "instance", "args": [], "class": "gluonts.torch.model.predictor.PyTorchPredictor", "kwargs": { "batch_size": 64, "device": "auto", "forecast_generator": { "__kind__": "instance", "args": [], "class": "gluonts.model.forecast_generator.SampleForecastGenerator", "kwargs": {} }, "input_names": [ "feat_static_cat", "feat_static_real", "past_time_feat", "past_target", "past_observed_values", "future_time_feat" ], "input_transform": { "__kind__": "instance", "class": "gluonts.transform._base.Chain", "kwargs": { "transformations": [ { "__kind__": "instance", "args": [], "class": "gluonts.transform.field.RemoveFields", "kwargs": { "field_names": [ "feat_static_real" ] } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.field.SetField", "kwargs": { "output_field": "feat_static_cat", "value": [ 0 ] } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.field.SetField", "kwargs": { "output_field": "feat_static_real", "value": [ 0.0 ] } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.convert.AsNumpyArray", "kwargs": { "dtype": { "__kind__": "type", "class": "builtins.int" }, "expected_ndim": 1, "field": "feat_static_cat" } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.convert.AsNumpyArray", "kwargs": { "dtype": { "__kind__": "type", "class": "numpy.float32" }, "expected_ndim": 1, "field": "feat_static_real" } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.convert.AsNumpyArray", "kwargs": { "dtype": { "__kind__": "type", "class": "numpy.float32" }, "expected_ndim": 1, "field": "target" } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.feature.AddObservedValuesIndicator", "kwargs": { "dtype": { "__kind__": "type", "class": "numpy.float32" }, "imputation_method": { "__kind__": "instance", "args": [], "class": "gluonts.transform.feature.DummyValueImputation", "kwargs": { "dummy_value": 0.0 } }, "output_field": "observed_values", "target_field": "target" } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.feature.AddTimeFeatures", "kwargs": { "dtype": { "__kind__": "type", "class": "numpy.float32" }, "output_field": "time_feat", "pred_length": 30, "start_field": "start", "target_field": "target", "time_features": [ { "__kind__": "type", "class": "autogluon.timeseries.utils.datetime.time_features.minute_of_hour" }, { "__kind__": "type", "class": "autogluon.timeseries.utils.datetime.time_features.hour_of_day" }, { "__kind__": "type", "class": "autogluon.timeseries.utils.datetime.time_features.day_of_week" }, { "__kind__": "type", "class": "autogluon.timeseries.utils.datetime.time_features.day_of_month" }, { "__kind__": "type", "class": "autogluon.timeseries.utils.datetime.time_features.day_of_year" } ] } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.feature.AddAgeFeature", "kwargs": { "dtype": { "__kind__": "type", "class": "numpy.float32" }, "log_scale": true, "output_field": "feat_dynamic_age", "pred_length": 30, "target_field": "target" } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.convert.VstackFeatures", "kwargs": { "drop_inputs": true, "h_stack": false, "input_fields": [ "time_feat", "feat_dynamic_age", "feat_dynamic_real" ], "output_field": "time_feat" } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.convert.AsNumpyArray", "kwargs": { "dtype": { "__kind__": "type", "class": "numpy.float32" }, "expected_ndim": 2, "field": "time_feat" } }, { "__kind__": "instance", "args": [], "class": "gluonts.transform.split.InstanceSplitter", "kwargs": { "dummy_value": 0.0, "forecast_start_field": "forecast_start", "future_length": 30, "instance_sampler": { "__kind__": "instance", "class": "gluonts.transform.sampler.PredictionSplitSampler", "kwargs": { "allow_empty_interval": false, "axis": -1, "min_future": 0, "min_past": 0 } }, "is_pad_field": "is_pad", "lead_time": 0, "output_NTC": true, "past_length": 1212, "start_field": "start", "target_field": "target", "time_series_fields": [ "time_feat", "observed_values" ] } } ] } }, "lead_time": 0, "output_transform": null, "prediction_length": 30, "prediction_net": { "__kind__": "instance", "args": [], "class": "gluonts.torch.model.deepar.lightning_module.DeepARLightningModule", "kwargs": { "lr": 0.001, "model_kwargs": { "cardinality": [ 1 ], "context_length": 60, "default_scale": null, "distr_output": { "__kind__": "instance", "args": [], "class": "gluonts.torch.distributions.studentT.StudentTOutput", "kwargs": { "beta": 0.0 } }, "dropout_rate": 0.1, "embedding_dimension": null, "freq": "D", "hidden_size": 40, "lags_seq": [ 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 22, 23, 24, 25, 26, 34, 35, 36, 37, 38, 287, 288, 289, 575, 576, 577, 863, 864, 865, 1151, 1152, 1153 ], "nonnegative_pred_samples": false, "num_feat_dynamic_real": 14, "num_feat_static_cat": 1, "num_feat_static_real": 1, "num_layers": 2, "num_parallel_samples": 100, "prediction_length": 30, "scaling": true }, "patience": 10, "weight_decay": 1e-08 } } } } ``` As you can see, the training arguments clearly state freq='5min', and the logs confirm that the data was resampled to '5min'. However, the freq within the model_kwargs of the trained DeepAR model is 'D'. Could someone shed some light on why this might be happening? Is this expected behavior, or is there something I might be missing in how AutoGluon handles frequency with DeepAR? Could this mismatch potentially affect the model's accuracy or the interpretation of the results? Any insights would be greatly appreciated. Thanks!
1medium
Title: Face recognition Body:
2hard
Title: How to cleanly finish a Process with split-n-join tasks? Body: Say I have a Process which has two optional View tasks to the finish: --> Split --> optional_view_1 ---> Join ----> finish | ^ | | -----> optional_view_2 ------- Let's say both tasks are assigned, but a human logs in and completes optional_view_1. I want to ensure the Process finishes cleanly. AFAICS, the Process gets into a "stuck" state due to optional_view_2 at the Join. Is that correct? I tried cancelling optional_view_2, but that had no effect. I'm looking for a programmatic approach if that makes any difference. I'm aware of #93, and so I think my question boils down to: - how to finish the process cleanly (i.e. not cancel it) and without races - from where (e.g. from inside the Join or a Handler after each View to cancel the other one?) What is the correct procedure in this case?
1medium
Title: Add zebra striping to rows in tables Body: ### NetBox version 4.1.3 ### Feature type Change to existing functionality ### Triage priority N/A ### Proposed functionality Add zebra striping to rows in tables. Add 5-10% difference in background colors between rows. ### Use case In wide tables with a large number of columns, you can position yourself faster and read the desired line across the entire width. ### Database changes _No response_ ### External dependencies _No response_
1medium
Title: UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 Body: ### Describe the bug My code: `interpreter.chat("Please summarize this article:https://about.fb.com/news/2023/08/code-llama-ai-for-coding/") interpreter.chat()` Report an error: `Exception in thread Thread-117 (handle_stream_output): Traceback (most recent call last): File "C:\Python311\Lib\threading.py", line 1038, in _bootstrap_inner self.run() File "C:\Python311\Lib\threading.py", line 975, in run self._target(*self._args, **self._kwargs) File "C:\Users\john\AppData\Roaming\Python\Python311\site-packages\interpreter\code_interpreters\subprocess_code_interpreter.py", line 121, in handle_stream_output for line in iter(stream.readline, ""): UnicodeDecodeError: 'gbk' codec can't decode byte 0x80 in position 870: illegal multibyte sequence` ![1699429214217](https://github.com/KillianLucas/open-interpreter/assets/51315718/8f9738f5-10fe-4154-a463-f8b029f2a3aa) ### Reproduce `interpreter.chat("Please summarize this article:https://about.fb.com/news/2023/08/code-llama-ai-for-coding/") interpreter.chat()` ### Expected behavior .. ### Screenshots _No response_ ### Open Interpreter version 0.1.11 ### Python version Python 3.11.4 ### Operating System name and version window10 ### Additional context _No response_
1medium
Title: reformat to fit awesome list format? Body: https://github.com/sindresorhus/awesome if you don't know what i'm talking about, seems like this would be quite fitting if reformatted right
3misc
Title: Fix type warnings in `playground/commands/run.py` Body: * Missing `id` annotations for tables * Use new join syntax * Fix ipython import
1medium
Title: How to train a paired dataset Body: Hello, author. My dataset is paired, and I want to train it in pairs. I tried to input the parameter "--dataset_mode aligned", but I got an error message "AssertionError: ./datasets/underwater\train is not a valid directory". The format of my dataset is shown in the following figure. Could you please tell me how to place the paired data for training? ![Image](https://github.com/user-attachments/assets/d0f48082-596d-4198-9488-e2627c79243a)
1medium
Title: Is SQLModel naturally async aware ? Body: ### First Check - [X] I added a very descriptive title to this issue. - [X] I used the GitHub search to find a similar issue and didn't find it. - [X] I searched the SQLModel documentation, with the integrated search. - [X] I already searched in Google "How to X in SQLModel" and didn't find any information. - [X] I already read and followed all the tutorial in the docs and didn't find an answer. - [X] I already checked if it is not related to SQLModel but to [Pydantic](https://github.com/samuelcolvin/pydantic). - [X] I already checked if it is not related to SQLModel but to [SQLAlchemy](https://github.com/sqlalchemy/sqlalchemy). ### Commit to Help - [X] I commit to help with one of those options 👆 ### Example Code ```python No code available ``` ### Description Can I use SQLModel inside my FastAPI async endpoint implementations without problems ? Apparently it works. But I'm not sure if it's destroying the asynchronicity. ### Operating System Linux ### Operating System Details _No response_ ### SQLModel Version 0.0.4 ### Python Version 3.9.5 ### Additional Context _No response_
1medium
Title: [Feature Request] Merge profile sessions from multiple runs to get statistical numbers like Average/p95/mean Body: Hi, Firstly I want to thank you for having this tool and I have benefited a lot from it to optimize our codebase! A feature that has been in my mind for some time: **since in real case, different modules in code may have different time variances and to get more accurate profiling results, we need to run multiple times and look at average/mean/p95 numbers for further optimization.** Currently I don't see an option to do that in pyinstrument and it would be best if it can support merging multiple profile sessions from multiple runs to get statistical numbers like Average/p95/Mean. Thank you!
1medium
Title: Call basic methods on `hparams` in a query Body: ## 🚀 Feature : Call basic methods on `hparams` in a query ? Having tracked runs with aim I can query runs with a term like the following: ``` ( run.experiment == "AE_noisy" or run_experiment == "AE_smoothed" ) ``` This can be shortened to: `run.experiment.startwith("AE_")` The same option for tracked hyperparameters, could be really usefull. So instead of having to run: ``` ( run.hparams.optimizer == "ADAM or run.hparams.optimizer == "RADAM" ) ``` I'd wish to run ``` run.hparams.optimizer.endswith("ADAM") ``` Currently this results in the error `query failed, 'Undefined' object is not callable` ### Motivation This would allow more flexible and shorter queries (especially when there are a lot of suffixes). Happy to hear any feedback whether this could be possible or is out of scope. Cheers!
1medium
Title: ImageField inside Maybe declaration no longer working since 3.1.0 Body: #### Description In a factory that I defined for companies, I'm randomly generating a logo using a `Maybe` declaration. This used to work fine up to and including 3.0.1, but as of 3.1.0 it has different behaviour. #### To Reproduce ##### Model / Factory code Leaving out the other fields as they cannot be relevant to the problem. ```python from factory import Faker, Maybe from factory.django import DjangoModelFactory, ImageField from ..models import Company class CompanyFactory(DjangoModelFactory): logo_add = Faker("pybool") logo = Maybe( "logo_add", yes_declaration=ImageField(width=500, height=200, color=Faker("color")), no_declaration=None, ) class Meta: model = Company exclude = ("logo_add",) ``` ##### The issue Up to and including 3.0.1 the behaviour - which is the desired behaviour as far as I'm concerend - was that I could generate companies that either had a logo or did not (about 50/50 since I'm just using "pybool" for the decider field). If they had a logo, the logo would be 500x200 with a random color. Now that I use 3.1.0, the randomness of about half the companies having logos still works, but _all_ generated logo's are now 100x100 and blue, which are simply defaults (although the [documentation](https://factoryboy.readthedocs.io/en/latest/orms.html?highlight=imagefield#factory.django.ImageField) says that "green" is actually the default), which is definitely something to fix :) Perhaps I was misusing/misunderstanding this feature all along, but then I'd still like to know how to get the desired behaviour described.
1medium
Title: Enhancing TikTok-Api Integration for TikTok-to-YouTube Automation Projects Body: **Title:** Enhancing TikTok-Api Integration for TikTok-to-YouTube Automation Projects **Issue:** We are developing a project, [tiktok-to-youtube-automation](https://github.com/scottsdevelopment/tiktok-to-youtube-automation), aimed at automating the process of downloading TikTok videos and uploading them to YouTube. In our pursuit of efficient and reliable solutions, we have explored various TikTok API wrappers, including [TikTok-Api](https://github.com/davidteather/TikTok-Api). **Context:** During our development, we encountered challenges with existing tools. For instance, the [tiktok-scraper](https://github.com/drawrowfly/tiktok-scraper) project has been discontinued, as noted in [this issue](https://github.com/drawrowfly/tiktok-scraper/issues/834). This has led us to seek alternative solutions for integrating TikTok functionalities into our automation workflow. **Proposal:** We are considering integrating [TikTok-Api](https://github.com/davidteather/TikTok-Api) into our project to handle TikTok video retrieval. Before proceeding, we would like to understand the current capabilities and limitations of TikTok-Api, especially concerning: - **Video Downloading:** The ability to programmatically download TikTok videos without watermarks. - **Rate Limiting:** Handling TikTok's rate limits to ensure stable operation. - **Maintenance and Support:** The project's activity level and responsiveness to issues or updates. **Request for Collaboration:** We invite the maintainers and community of TikTok-Api to provide insights into these aspects. Additionally, we welcome suggestions for best practices when integrating TikTok-Api into automation projects similar to ours. **Broader Community Engagement:** We believe that a robust solution for TikTok to YouTube automation can benefit a wide range of users. By collaborating and sharing knowledge across projects, we can develop more resilient and feature-rich tools for the community. **References:** - [tiktok-to-youtube-automation Project](https://github.com/scottsdevelopment/tiktok-to-youtube-automation) - [Discontinuation of tiktok-scraper](https://github.com/drawrowfly/tiktok-scraper/issues/834) - [TikTok-Api Repository](https://github.com/davidteather/TikTok-Api) We look forward to the possibility of integrating TikTok-Api into our project and contributing to the broader community's efforts in this domain.
1medium
Title: Fitting autokeras with the EarlyStopping baseline parameter does not work Body: ### Bug Description When the EarlyStopping baseline parameter is triggered, autokeras is crashing with the following error : TypeError: object of type 'NoneType' has no len() ### Bug Reproduction Here is the colab: https://colab.research.google.com/drive/1oqxaIaXb51qGaFSRBJtUL5yDZ77Udjx1?usp=sharing ### Setup Details Include the details about the versions of: - OS type and version: - Python: - autokeras: 1.0.12 - keras-tuner: master - scikit-learn: - numpy: - pandas: - tensorflow:
1medium
Title: Internal: Blas GEMM launch failed when running classifier for URLs Body: System information: - os: Windows 11 - gpu: Nvidia GeForce RTX 3080 TI (12GB) - Tensor flow: tensorflow-gpu v 1.14.0 - cuda: v 10.0 (but i have other version installed: 12.4 and 9.0 which dont have the required .dll file, all of them are in my PATH) - python: 3.7 (for the purposes of protobuf) The error: ``` 2024-04-22 15:35:14.641625: E tensorflow/stream_executor/cuda/cuda_blas.cc:428] failed to run cuBLAS routine: CUBLAS_STATUS_EXECUTION_FAILED ERROR:tensorflow:Error recorded from training_loop: 2 root error(s) found. (0) Internal: Blas GEMM launch failed : a.shape=(4096, 2), b.shape=(2, 768), m=4096, n=768, k=2 [[node bert/embeddings/MatMul (defined at D:\Faks\UM-Mag 23-25\Drugi semester\JT\google-bert\modeling.py:487) ]] [[loss/Mean/_4861]] (1) Internal: Blas GEMM launch failed : a.shape=(4096, 2), b.shape=(2, 768), m=4096, n=768, k=2 [[node bert/embeddings/MatMul (defined at D:\Faks\UM-Mag 23-25\Drugi semester\JT\google-bert\modeling.py:487) ]] 0 successful operations. 0 derived errors ignored. ``` What i've tried: I tried checking `nvidia-smi.exe` to see if i had something running on the GPU while training but got the following result: ``` +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 552.22 Driver Version: 552.22 CUDA Version: 12.4 | |-----------------------------------------+------------------------+----------------------+ | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 3080 Ti WDDM | 00000000:0A:00.0 Off | N/A | | 0% 36C P8 24W / 350W | 1598MiB / 12288MiB | 3% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 0 N/A N/A 9072 C+G C:\Windows\explorer.exe N/A | | 0 N/A N/A 10652 C+G ...al\Discord\app-1.0.9042\Discord.exe N/A | | 0 N/A N/A 10688 C+G ...ekyb3d8bbwe\PhoneExperienceHost.exe N/A | | 0 N/A N/A 10820 C+G ...nt.CBS_cw5n1h2txyewy\SearchHost.exe N/A | | 0 N/A N/A 10844 C+G ...2txyewy\StartMenuExperienceHost.exe N/A | | 0 N/A N/A 14572 C+G ...\cef\cef.win7x64\steamwebhelper.exe N/A | | 0 N/A N/A 14744 C+G ...GeForce Experience\NVIDIA Share.exe N/A | | 0 N/A N/A 14824 C+G ...1.0_x64__8wekyb3d8bbwe\Video.UI.exe N/A | | 0 N/A N/A 15072 C+G ...t.LockApp_cw5n1h2txyewy\LockApp.exe N/A | | 0 N/A N/A 17164 C+G ...CBS_cw5n1h2txyewy\TextInputHost.exe N/A | | 0 N/A N/A 18100 C+G ...les\Microsoft OneDrive\OneDrive.exe N/A | | 0 N/A N/A 18936 C+G ...5n1h2txyewy\ShellExperienceHost.exe N/A | | 0 N/A N/A 19308 C+G ...air\Corsair iCUE5 Software\iCUE.exe N/A | | 0 N/A N/A 19848 C+G ...crosoft\Edge\Application\msedge.exe N/A | | 0 N/A N/A 23840 C+G ..._x64__kzf8qxf38zg5c\Skype\Skype.exe N/A | | 0 N/A N/A 24040 C+G ...lf\0.248.120.19\OverwolfBrowser.exe N/A | | 0 N/A N/A 25276 C+G ...on\123.0.2420.97\msedgewebview2.exe N/A | | 0 N/A N/A 25604 C+G ...ejd91yc\AdobeNotificationClient.exe N/A | | 0 N/A N/A 25636 C+G ...509_x64__8wekyb3d8bbwe\ms-teams.exe N/A | | 0 N/A N/A 25920 C+G ...ktop\EA Desktop\EACefSubProcess.exe N/A | | 0 N/A N/A 25972 C+G ...\GOG Galaxy\GalaxyClient Helper.exe N/A | | 0 N/A N/A 26180 C+G ...EA Desktop\EA Desktop\EADesktop.exe N/A | | 0 N/A N/A 28536 C+G ...cks-services\BlueStacksServices.exe N/A | | 0 N/A N/A 29332 C+G ...aam7r\AcrobatNotificationClient.exe N/A | | 0 N/A N/A 31120 C+G ...on\123.0.2420.97\msedgewebview2.exe N/A | | 0 N/A N/A 31468 C+G ..._x64__kzf8qxf38zg5c\Skype\Skype.exe N/A | | 0 N/A N/A 32340 C+G ...m Files\Mozilla Firefox\firefox.exe N/A | | 0 N/A N/A 33104 C+G ...on\HEX\Creative Cloud UI Helper.exe N/A | | 0 N/A N/A 33208 C+G ...on\123.0.2420.97\msedgewebview2.exe N/A | | 0 N/A N/A 35396 C+G ...wekyb3d8bbwe\XboxGameBarWidgets.exe N/A | | 0 N/A N/A 39264 C+G ...m Files\Mozilla Firefox\firefox.exe N/A | +-----------------------------------------------------------------------------------------+ ``` Then i tried googling for other similar issues and found [this](https://stackoverflow.com/questions/43990046/tensorflow-blas-gemm-launch-failed) and when following [this answers](https://stackoverflow.com/a/65523597) instructions, adding the lines to the `modeling.py` after the imports i received the same error. I didn't find any other possible solutions and i'm unsure as to what i'm doing wrong. Did i add the memory growth lines in the wrong file or did i go about solving the issue completely wrong? Any help is appreciated. I am running the 3.7 kernel in an virtual environment and the data i am feeding the model is properly formatted. I am using the BERT base uncased model downloaded from this repository.
2hard
Title: model_store: FileExistsError: [Errno 17] File exists: '/root/.mxnet/models' Body: Upon running the maskrcnn example, I hit the above error. Following stack trace: ``` [1,22]<stdout>:Downloading /root/.mxnet/models/resnet50_v1b-0ecdba34.zip from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/resnet50_v1b-0ecdba34.zip... [1,37]<stdout>:Downloading /root/.mxnet/models/resnet50_v1b-0ecdba34.zip from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/resnet50_v1b-0ecdba34.zip... [1,38]<stdout>:Traceback (most recent call last): [1,38]<stdout>: File "train_mask_rcnn.py", line 698, in <module> [1,38]<stdout>: per_device_batch_size=args.batch_size // num_gpus, **kwargs) [1,38]<stdout>: File "/usr/local/lib/python3.7/site-packages/gluoncv/model_zoo/model_zoo.py", line 403, in get_model [1,38]<stdout>: net = _models[name](**kwargs) [1,38]<stdout>: File "/usr/local/lib/python3.7/site-packages/gluoncv/model_zoo/rcnn/mask_rcnn/predefined_models.py", line 97, in mask_rcnn_fpn_resnet50_v1b_coco [1,38]<stdout>: base_network = resnet50_v1b(pretrained=pretrained_base, dilated=False, use_global_stats=True) [1,38]<stdout>: File "/usr/local/lib/python3.7/site-packages/gluoncv/model_zoo/resnetv1b.py", line 367, in resnet50_v1b [1,38]<stdout>: tag=pretrained, root=root), ctx=ctx) [1,38]<stdout>: File "/usr/local/lib/python3.7/site-packages/gluoncv/model_zoo/model_store.py", line 274, in get_model_file [1,38]<stdout>: os.makedirs(root) [1,38]<stdout>: File "/usr/local/lib/python3.7/os.py", line 223, in makedirs [1,38]<stdout>: mkdir(name, mode) [1,38]<stdout>:FileExistsError: [Errno 17] File exists: '/root/.mxnet/models' -------------------------------------------------------------------------- MPI_ABORT was invoked on rank 38 in communicator MPI COMMUNICATOR 5 DUP FROM 0 with errorcode 1. NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes. You may or may not see output from other processes, depending on exactly when Open MPI kills them. -------------------------------------------------------------------------- ``` Looks like multiple ranks are trying to create the folder simultaneously. Note: This error is hit intermittently [not reproducible 100% times]
1medium
Title: Trax Tutorials Body: Hey, I see that there are no tutorial notebooks for **[Trax](https://github.com/google/trax)** implementations in this repository yet. Trax is an _end-to-end_ library for deep learning that focuses on clear code and speed. It is actively used and maintained in the **Google Brain team**. I would like to add such tutorial notebooks in Trax
0easy
Title: API Endpoint /represent fails with 400 for array of img URLs Body: ### Description Using an array of `img` items via the API endpoint `represent` responds with the following error ``` { "error": "Exception while representing: img must be numpy array or str but it is <class 'list'>" } ``` #### Steps to Reproduce 1. Pull repo 2. Build the image `docker build -t deepface -f Dockerfile .` 3. Run the image `docker run deepface` 4. Attempt to use the represent endpoint with an array of images i.e.: ``` { "img": ["imgUrl1", "imgUrl2"] } ``` ### Expected Behavior The API is able to parse the list into a numpy array and completed the request.
1medium
Title: How to login with cookie? Body: Hi, I create a login form page , I want to login it with cookie, How to do it? I test it , but not work. ``` auth_backends = [ CookieAuthentication(secret=SECRET, lifetime_seconds=3600), # JWTAuthentication(secret=SECRET, lifetime_seconds=3600), ] fastapi_users = FastAPIUsers( user_db, auth_backends, User, UserCreate, UserUpdate, UserDB, SECRET, ) app.include_router(fastapi_users.router, prefix="/users", tags=["users"]) templates = Jinja2Templates(directory='templates') ... @app.get("/") async def read_root(user: User = Depends(fastapi_users.get_current_active_user)): return {"Hello": f"{user.email}"} @app.route("/login", methods=['GET']) async def login(request): return templates.TemplateResponse('login.html', {'request': request}) ``` template ``` <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Login</title> </head> <body> <h1>Login</h1> <form method="post" action="/users/login/cookie"> <input name="username" autocomplete="off"> <input name="password" autocomplete="off"> <button>submit</button> </form> </body> </html> ``` I access Login page and input username and password, then submit it, response null, then I access homepage "http://127.0.0.1:8000", but still display `{"detail":"Unauthorized"}`
1medium
Title: Got an unexpected keyword argument 'filters' Body: Argument filters shows up in GraphiQL, but still got an error. It works fine before upgrading to v3. ![image](https://github.com/blb-ventures/strawberry-django-plus/assets/5219550/e7099117-7eac-4c25-b1ae-4216603f7e9f) ![image](https://github.com/blb-ventures/strawberry-django-plus/assets/5219550/1c133fb8-16c7-462d-8e1c-c154c24b2f69) Related code: <https://github.com/he0119/smart-home/commit/9922c788a2d79761bd6c100c3bd4b13c31cfb4d6#diff-af3602ede1befa32df28d961add5b48aaf07992465fb6d0f1dbb50e4a0568cdbR79-R85> ```python @gql.django.type(models.Device, filters=DeviceFilter, order=DeviceOrder) class Device(relay.Node): name: auto device_type: auto location: auto created_at: auto edited_at: auto is_online: auto online_at: auto offline_at: auto token: auto # FIXME: Device.autowatering_data() got an unexpected keyword argument 'filters' @gql.django.connection( gql.django.ListConnectionWithTotalCount[AutowateringData], filters=AutowateringDataFilter, order=AutowateringDataOrder, ) def autowatering_data(self, info) -> Iterable[models.AutowateringData]: return models.AutowateringData.objects.all() ```
1medium
Title: catplot with redundant hue assignment creates empty legend with title Body: ```python sns.catplot(tips, x="day", y="total_bill", hue="day", col="sex", row="smoker", kind="box", height=3) ``` ![image](https://github.com/mwaskom/seaborn/assets/315810/53b0af1e-e133-46bb-92bd-78c91db0221b) Set `legend=False` to workaround, but with default `legend='auto'` this should be disabled due to the redundancy.
1medium
Title: Add scope_name field when doing bulk ipam.prefixes imports Body: ### NetBox version v4.2.2 ### Feature type Change to existing functionality ### Proposed functionality Add `scope_name` in addition or as alternative field to `scope_id` when doing builk `ipam.prefix` (and others) imports. ### Use case Before updating from v4.1 to v4.2 we noticed the breaking change about the removal of the `site` field which got replaced by a combination of `scope_type` and `scope_id`. I don't question the need for the multipe scope types, but to have a better migration when doing bulk imports it would be nice to have a `scope_name` field in addition to `scope_id`. Of course you can only have one field filled (id or name). Sure this would cause an id-lookup when scope_name is used (like in v4.1) but it would help the transition (we would just have to add scope_type=dcim.site and rename the csv field site to scope_name and continue instead of using numeric ids during mass imports. ### Database changes Not that I know of ### External dependencies None
1medium
Title: `xr.open_zarr` is 3x slower than `zarr.open`, even at scale Body: ### What is your issue? I'm doing some benchmarks on Xarray + Zarr vs. some other formats, and I get quite a surprising result — in a very simple array, xarray is adding a lot of overhead to reading a Zarr array. Here's a quick script — super simple, just a single chunk. It's 800MB of data — so not some tiny array where reading a metadata json file or allocating an index is going to throw the results. ```python import numpy as np import zarr import xarray as xr import dask print(zarr.__version__, xr.__version__, dask.__version__) ( xr.DataArray(np.random.rand(10000, 10000), name="foo") .to_dataset() .chunk(None) .to_zarr("test.zarr", mode="w") ) %timeit xr.open_zarr("test.zarr").compute() %timeit zarr.open("test.zarr")["foo"][:] ``` ``` 2.17.2 2024.5.1.dev37+gce196d56 2024.5.2 551 ms ± 15 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 183 ms ± 2.93 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) ``` So: - 551ms for xarray - 183ms for zarr Having a quick look with `py-spy` suggests there might be some thread contention, but not sure how much is really contention vs. idle threads waiting. --- Making the array 10x bigger (with 10 chunks) reduces the relative difference, but it's still fairly large: ``` 2.17.2 2024.5.1.dev37+gce196d56 2024.5.2 6.88 s ± 353 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 4.15 s ± 264 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ``` --- Any thoughts on what might be happening? Is the benchmark at least correct?
1medium
Title: Add support for running DFS using multiprocessing Body: - We support running DFS via multiprocessing (https://docs.python.org/3/library/multiprocessing.html)
1medium
Title: Fillna does not work if fields_group is not None Body: ## 🐛 Bug Description <!-- A clear and concise description of what the bug is. --> The Fillna processor does not work if fields_group is not None since assigning values to df.values changes nothing. ## To Reproduce Use any model and specify fields_group for Fillna processor. ## Expected Behavior <!-- A clear and concise description of what you expected to happen. --> No nan after calling Fillna. ## Additional Notes <!-- Add any other information about the problem here. --> Same as the issue here: https://github.com/microsoft/qlib/issues/1307#issuecomment-1785284039.
1medium
Title: 'NoneType' object has no attribute 'description' Body: Firstly, thanks for this great library. Now, in: https://github.com/axnsan12/drf-yasg/blob/2ef7cfbfe369a55e8b68e574bf20fe32d40cac38/src/drf_yasg/inspectors/query.py#L49 If we can't find out which type it is, we default to string. However, later, we try to ask the schema description: https://github.com/axnsan12/drf-yasg/blob/2ef7cfbfe369a55e8b68e574bf20fe32d40cac38/src/drf_yasg/inspectors/query.py#L51 My field that is getting passed in, is from https://github.com/django-money/django-money, has no schema: ``` python ipdb> field Field(name=u'currency', required=False, location='query', schema=None, description=u'', type=None, example=None) ipdb> type(field.schema) <type 'NoneType'> ipdb> field.schema.description *** AttributeError: 'NoneType' object has no attribute 'description' ``` Not sure what to do exactly but it seems that we should make a `field.schema is None` check?
1medium
Title: relationship_proxy documentation doesn't work with `_: dataclasses.KW_ONLY` Body: ### Describe the bug Consider the example [here](https://docs.sqlalchemy.org/en/20/orm/extensions/associationproxy.html#simplifying-association-objects): If you add `MappedAsDataclass` and `_: dataclasses.KW_ONLY` to `UserKeywordAssociation` the example stops working because the implicit creator passes the argument as positional. ### Optional link from https://docs.sqlalchemy.org which documents the behavior that is expected _No response_ ### SQLAlchemy Version in Use 2.0.31 ### DBAPI (i.e. the database driver) asyncpg ### Database Vendor and Major Version postgres 16 ### Python Version 3.12 ### Operating system Linux ### To Reproduce ```python from __future__ import annotations from typing import List from typing import Optional from sqlalchemy import ForeignKey from sqlalchemy import String from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.ext.associationproxy import AssociationProxy from sqlalchemy.orm import DeclarativeBase from sqlalchemy.orm import MappedAsDataclass from sqlalchemy.orm import Mapped from sqlalchemy.orm import mapped_column from sqlalchemy.orm import relationship class Base(DeclarativeBase, MappedAsDataclass): pass class User(Base): __tablename__ = "user" id: Mapped[int] = mapped_column(primary_key=True) name: Mapped[str] = mapped_column(String(64)) user_keyword_associations: Mapped[List[UserKeywordAssociation]] = relationship( back_populates="user", cascade="all, delete-orphan", ) # association proxy of "user_keyword_associations" collection # to "keyword" attribute keywords: AssociationProxy[List[Keyword]] = association_proxy( "user_keyword_associations", "keyword", ) def __init__(self, name: str): self.name = name class UserKeywordAssociation(Base): __tablename__ = "user_keyword" _: dataclasses.KW_ONLY user_id: Mapped[int] = mapped_column(ForeignKey("user.id"), primary_key=True) keyword_id: Mapped[int] = mapped_column(ForeignKey("keyword.id"), primary_key=True) special_key: Mapped[Optional[str]] = mapped_column(String(50)) user: Mapped[User] = relationship(back_populates="user_keyword_associations") keyword: Mapped[Keyword] = relationship() class Keyword(Base): __tablename__ = "keyword" id: Mapped[int] = mapped_column(primary_key=True) keyword: Mapped[str] = mapped_column("keyword", String(64)) def __init__(self, keyword: str): self.keyword = keyword def __repr__(self) -> str: return f"Keyword({self.keyword!r})" user = User("log") for kw in (Keyword("new_from_blammo"), Keyword("its_big")): user.keywords.append(kw) # boom print(user.keywords) ``` ### Error ``` /Users/tamird/Library/Caches/pypoetry/virtualenvs/common-hf-Ms37h-py3.12/lib/python3.12/site-packages/sqlalchemy/ext/associationproxy.py:1505: in append item = self._create(value) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ def _create(self, value: _T) -> Any: > return self.creator(value) E TypeError: __init__() takes 1 positional argument but 2 were given ``` ### Additional context _No response_
1medium
Title: [Bug]: MODEL_ZOO is not reused in subprocesses Body: Since `model_key` (the hash of partial function) changes in mapped processes, the preloaded models are never truly reused. https://github.com/modelscope/data-juicer/blob/aaa404a5b12c9ef87ebf54a7bf38c7b4bcbfd0f1/data_juicer/utils/model_utils.py#L546-L549
1medium
Title: id missing in the payload for the endpoint POST /accounts Body: In the response for GET /\__api\__, for the endpoint POST /accounts, the ObjectSchema( body) is <img width="1711" alt="Screenshot 2022-04-15 at 2 07 07 PM" src="https://user-images.githubusercontent.com/26853764/163551763-7f9821ef-0586-4fb6-bc3b-0e84423ffcb1.png"> Using this body gives the following error, ``` { "code": 400, "errno": 107, "error": "Invalid parameters", "message": "data.id in body: Required", "details": [ { "location": "body", "name": "data.id", "description": "data.id in body: Required" } ] } ``` The "id" field is missing in the body of the endpoint POST /accounts in the OpenAPI Spec. Correct payload should be, ``` { "data": { "password": "string", "id": "username", "additionalProp1": "string", "additionalProp2": "string", "additionalProp3": "string" }, "permissions": { "read": [ "string" ], "write": [ "string" ] } } ```
1medium
Title: In tf1.13.1 version, bert performs downstream tasks, how to run bert on multiple GPUs? Body: Written on github:Yes, all of the code in this repository works out-of-the-box with CPU, GPU, and Cloud TPU. However, GPU training is single-GPU only. When bert completes downstream tasks and performs fine_tune, can't he train on multiple GPUs? If not, when can the downstream task be trained on the bert model of multiple GPUs? Because, when a very large long text is trained for bert, an error will be reported and the efficiency will be low
1medium
Title: Can't find "index" Body: Hi ! There some trouble in the running process of sweetviz. My code is `report = sw.analyze(df_a)` But python noted e with the following keyerror `"None of ['index'] are in the columns"` I had checked my columns' name, and tried to resent the index as well, however, pyhton still send the notes. Hope for ur help if it is convenient ! The whole error notes `--------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In[57], line 1 ----> 1 report = sw.analyze(df_a) File ~\AppData\Roaming\Python\Python39\site-packages\sweetviz\sv_public.py:12, in analyze(source, target_feat, feat_cfg, pairwise_analysis) 8 def analyze(source: Union[pd.DataFrame, Tuple[pd.DataFrame, str]], 9 target_feat: str = None, 10 feat_cfg: FeatureConfig = None, 11 pairwise_analysis: str = 'auto'): ---> 12 report = sweetviz.DataframeReport(source, target_feat, None, 13 pairwise_analysis, feat_cfg) 14 return report File ~\AppData\Roaming\Python\Python39\site-packages\sweetviz\dataframe_report.py:256, in DataframeReport.__init__(self, source, target_feature_name, compare, pairwise_analysis, fc) 253 for f in features_to_process: 254 # start = time.perf_counter() 255 self.progress_bar.set_description_str(f"Feature: {f.source.name}") --> 256 self._features[f.source.name] = sa.analyze_feature_to_dictionary(f) 257 self.progress_bar.update(1) 258 # print(f"DONE FEATURE------> {f.source.name}" 259 # f" {(time.perf_counter() - start):.2f} {self._features[f.source.name]['type']}") 260 # self.progress_bar.set_description_str('[FEATURES DONE]') 261 # self.progress_bar.close() 262 263 # Wrap up summary File ~\AppData\Roaming\Python\Python39\site-packages\sweetviz\series_analyzer.py:92, in analyze_feature_to_dictionary(to_process) 89
1medium
Title: Add conda installation instructions Body:
0easy
Title: Shapefile gives warning with GSHHS feature Body: Hi, shapefile gives me a warning when I save a figure which has GSHHS features in it. Thought I'd ask it here: MWE: ```python import matplotlib.pyplot as plt; import cartopy.crs as ccrs; import cartopy; fig = plt.figure(); proj = ccrs.Mercator(central_longitude = 0); ax = plt.axes(projection = proj); ax.add_feature(cartopy.feature.GSHHSFeature(levels = (1, 2), linewidth = 2.0)); print("before"); fig.savefig("test.png"); print("after"); ``` output: before ``` /home/max/.local/lib/python3.8/site-packages/shapefile.py:385: UserWarning: Shapefile shape has invalid polygon: no exterior rings found (must have clockwise orientation); interpreting holes as exteriors. warnings.warn('Shapefile shape has invalid polygon: no exterior rings found (must have clockwise orientation); interpreting holes as exteriors.') ``` after What is the cause of this and how can it be resolved? OS: Ubuntu 20.04 Cartopy: 0.18.0 pyshp: 2.1.2 Thanks in advance.
1medium
Title: adjust font size under heatmap_track.yticks Body: Great package! I want to know how to adjust font size under heatmap_track.yticks I followed the example https://moshi4.github.io/pyCirclize/phylogenetic_tree/#2-3-with-heatmap ``` from pycirclize import Circos from pycirclize.utils import load_example_tree_file, ColorCycler import numpy as np np.random.seed(0) tree_file = load_example_tree_file("large_example.nwk") circos, tv = Circos.initialize_from_tree( tree_file, start=-350, end=0, r_lim=(10, 80), leaf_label_size=5, leaf_label_rmargin=21, line_kws=dict(color="lightgrey", lw=1), ) # Define group-species dict for tree annotation # In this example, set minimum species list to specify group's MRCA node group_name2species_list = dict( Monotremata=["Tachyglossus_aculeatus", "Ornithorhynchus_anatinus"], Marsupialia=["Monodelphis_domestica", "Vombatus_ursinus"], Xenarthra=["Choloepus_didactylus", "Dasypus_novemcinctus"], Afrotheria=["Trichechus_manatus", "Chrysochloris_asiatica"], Euarchontes=["Galeopterus_variegatus", "Theropithecus_gelada"], Glires=["Oryctolagus_cuniculus", "Microtus_oregoni"], Laurasiatheria=["Talpa_occidentalis", "Mirounga_leonina"], ) # Set tree line color ColorCycler.set_cmap("Set2") for species_list in group_name2species_list.values(): tv.set_node_line_props(species_list, color=ColorCycler()) # Plot heatmap sector = circos.sectors[0] heatmap_track = sector.add_track((80, 100)) matrix_data = np.random.randint(0, 100, (5, tv.leaf_num)) heatmap_track.heatmap(matrix_data, cmap="viridis") heatmap_track.yticks([0.5, 1.5, 2.5, 3.5, 4.5], list("EDCBA"), vmax=5, tick_length=0, fontsize=10) fig = circos.plotfig() ``` but got ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-56-ce35496d538a>](https://localhost:8080/#) in <cell line: 0>() 39 matrix_data = np.random.randint(0, 100, (5, tv.leaf_num)) 40 heatmap_track.heatmap(matrix_data, cmap="viridis") ---> 41 heatmap_track.yticks([0.5, 1.5, 2.5, 3.5, 4.5], list("EDCBA"), vmax=5, tick_length=0, fontsize=10) 42 43 fig = circos.plotfig() TypeError: Track.yticks() got an unexpected keyword argument 'fontsize' ```
0easy
Title: Please work on browser fingerprints Body: Please add bypass options for canvas fingerprinting audio fingerprinting and also timezone integration on browser level id like to work with you to implement these features
2hard
Title: I want a parameter configuration that reproduces the results Body: Using the operating instructions you provided and the parameter settings in the documentation did not reproduce the results, The parameter settings in the article are even less effective. Can you provide a parameter setting that achieves the effect in the article and put it in the document. ` Evaluating market1501 (source) Extracting features from query set ... Done, obtained 3368-by-512 matrix Extracting features from gallery set ... Done, obtained 15913-by-512 matrix Speed: 0.0299 sec/batch Computing distance matrix with metric=euclidean ... Computing CMC and mAP ... ** Results ** mAP: 78.0% CMC curve Rank-1 : 91.3% Rank-5 : 96.8% Rank-10 : 97.9% Rank-20 : 98.8% Checkpoint saved to "log/osnet_x1_0-softmax-market1501/model/model.pth.tar-64" ` has converged ` Evaluating market1501 (source) Extracting features from query set ... Done, obtained 3368-by-512 matrix Extracting features from gallery set ... Done, obtained 15913-by-512 matrix Speed: 0.0299 sec/batch Computing distance matrix with metric=euclidean ... Computing CMC and mAP ... ** Results ** mAP: 78.1% CMC curve Rank-1 : 91.3% Rank-5 : 96.8% Rank-10 : 97.9% Rank-20 : 98.8% Checkpoint saved to "log/osnet_x1_0-softmax-market1501/model/model.pth.tar-100" ` `Total params: 2,578,879 Trainable params: 2,578,879 Non-trainable params: 0 Input size (MB): 0.38 Forward/backward pass size (MB): 282.45 Params size (MB): 9.84 Estimated Total Size (MB): 292.66 Loading checkpoint from "******************************/model.pth.tar-100" Loaded model weights Loaded optimizer Last epoch = 100 Last rank1 = 91.3% dist_metric='cosine' Evaluating dukemtmcreid (target) Extracting features from query set ... Done, obtained 2228-by-512 matrix Extracting features from gallery set ... Done, obtained 17661-by-512 matrix Speed: 0.0303 sec/batch Computing distance matrix with metric=cosine ... Computing CMC and mAP ... ** Results ** mAP: 24.3% CMC curve Rank-1 : 41.7% Rank-5 : 57.7% Rank-10 : 63.3% Rank-20 : 69.0% `
1medium
Title: BUG: Single Index of Tuples as Output on Tuple Groupings Body: ### Pandas version checks - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the [latest version](https://pandas.pydata.org/docs/whatsnew/index.html) of pandas. - [X] I have confirmed this bug exists on the [main branch](https://pandas.pydata.org/docs/dev/getting_started/install.html#installing-the-development-version-of-pandas) of pandas. ### Reproducible Example ```python df = pandas.DataFrame({"A" : [1,2,3,1,2,3], "B": [4,5,6,4,5,6], "C" : [7,8,9,7,8,9]}) df = df.set_index(['A', 'B']) df.groupby(lambda x : (x[0], x[1])).aggregate('sum') ``` ### Issue Description This issue appears to be similar to #24786 except that here a lambda is used to create the tuples. The [User Guide for Pandas](https://pandas.pydata.org/docs/user_guide/groupby.html) states that > The result of the aggregation will have the group names as the new index. In the case of multiple keys, the result is a MultiIndex by default. Thus I was expecting the tuples to be automatically combined to form a ```MultiIndex``` as opposed to an ```Index``` with tuples as indices. Internally, the ```Index.map()``` [call](https://github.com/pandas-dev/pandas/blob/8a5344742c5165b2595f7ccca9e17d5eff7f7886/pandas/core/groupby/grouper.py#L511) converts the produced list of tuples to a ```MultiIndex```, but when it [produces the aggregation index](https://github.com/pandas-dev/pandas/blob/8a5344742c5165b2595f7ccca9e17d5eff7f7886/pandas/core/groupby/ops.py#L753), it appears to produce a single ``Index``` instead. I wasn't sure if this was intended behaviour, or a bug; I apologize if it is the former! ### Expected Behavior ```python df = pandas.DataFrame({"A" : [1,2,3,1,2,3], "B": [4,5,6,4,5,6], "C" : [7,8,9,7,8,9]}) df = df.set_index(['A', 'B']) df.groupby(['A', 'B']).aggregate('sum') ``` ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.13.1 python-bits : 64 OS : Windows OS-release : 10 Version : 10.0.18363 machine : AMD64 processor : AMD64 Family 21 Model 96 Stepping 1, AuthenticAMD byteorder : little LC_ALL : None LANG : None LOCALE : English_Canada.1252 pandas : 2.2.3 numpy : 2.2.1 pytz : 2024.2 dateutil : 2.9.0.post0 pip : 24.3.1 Cython : None sphinx : None IPython : None adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : None blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : None html5lib : None hypothesis : None gcsfs : None jinja2 : None lxml.etree : None matplotlib : None numba : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None psycopg2 : None pymysql : None pyarrow : None pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlsxwriter : None zstandard : None tzdata : 2024.2 qtpy : None pyqt5 : None</details>
1medium
Title: Quality problems with H264 Codec and Server example Body: Hey, I have the following setup: - The [aiortc server](https://github.com/aiortc/aiortc/blob/main/examples/server/server.py) from the aiortc examples is running on a Windows machine - An Android phone is connecting to the server (Using Google's Java WebRTC implementation) This works perfectly fine as long as I'm using a VP8 Encoder/Decoder. Using the H264 Codec, the video stream sent to the aiortc server also looks fine (Tested this by recording it). However, the video stream sent back to the Android system is very bad quality-wise (low PFS, bad image). Looking at the Sender Statistics, the server receives millions of bytes, but only sends back a couple thousand. A similar issue also happens with the original server example, using the following setup: - [Aiortc server](https://github.com/aiortc/aiortc/blob/main/examples/server/server.py) from original example, runs on Windows - [Javascript client](https://github.com/aiortc/aiortc/blob/main/examples/server/client.js) from original example (Using Firefox/Chrome on Windows/Android using Virtual Camera/Phone Camera -> all same result) Here, the quality seems fine originally, but degrades within 30-60 seconds of connection, eventually losing all colors and getting ultra blurry. This also does not happen with VP8, only with H264. Could it be that the aiortc H264 Codec is not compatible with other implementations?
1medium
Title: Add linewidth parameter to plot method Body: #### Description It seems that this parameter has a significant effect on the output ## Linewidth: 1.2 | Spot Size: 0.1 ![l12_s01](https://user-images.githubusercontent.com/7515099/154801642-c38af7f5-a712-4fd9-9c57-405ab0b26087.png) ## Linewidth: 1.2 | Spot Size: 10 ![112_s10](https://user-images.githubusercontent.com/7515099/154801674-a59c3741-c597-4d99-856a-88f885dcfa5b.png) ## Linewidth: 12 | Spot Size: 0.1 ![l120_s01](https://user-images.githubusercontent.com/7515099/154801679-8981271d-7afc-49ce-9f47-4154fa571bdf.png) ## Linewidth: 12 | Spot Size: 10 ![1120_s10](https://user-images.githubusercontent.com/7515099/154801697-4e2734ec-ec1b-450f-b585-ca45ac16ac3d.png)
1medium
Title: Barplot Body: barplot max value shows almost half of maximum real data, but matplotlib bar fit the data well. try to compare this > import seaborn as sns > tips = sns.load_dataset('tips') > sns.barplot(y=tips['total_bill'], x=tips['day']) and > import matplotlib.pyplot as plt > plt.bar(height=tips['total_bill'], x=tips['day'])
1medium
Title: Feature Request Body: ### Missing functionality As a frequent user of ydata_profiling am encountering the below issue In the given dataset for the numeric datatype column we have to exclude empty cell while calculating 'sum'. When we are not including empty cells then the value of sum is coming as 'NaN'. From our side if we are replacing empty with '0' then it is impacting 'min' value, if we are replacing with some other value then it is impacting the data type of the corresponding column. ### Proposed feature we have to exclude empty or null cell of the numeric data type columns while calculating 'sum'. When we are not including empty cells then the value of sum is coming as 'NaN' ### Alternatives considered Below logic in describe_numeric_spark.py is the place where 'sum' is been is calculated. Please correct me if am wrong @describe_numeric_1d.register def describe_numeric_1d_spark( config: Settings, df: DataFrame, summary: dict ) -> Tuple[Settings, DataFrame, dict]: """Describe a boolean series. Args: series: The Series to describe. summary: The dict containing the series description so far. Returns: A dict containing calculated series description values. """ stats = numeric_stats_spark(df, summary) summary["min"] = stats["min"] summary["max"] = stats["max"] summary["mean"] = stats["mean"] summary["std"] = stats["std"] summary["variance"] = stats["variance"] summary["skewness"] = stats["skewness"] summary["kurtosis"] = stats["kurtosis"] summary["sum"] = stats["sum"] ### Additional context We are building wheel file from our code and installing the same in databricks cluster and trying to do exploratory data analysis of the given source dataset in CSV file format
1medium
Title: new version numpy from text-generation-webui Body: ### Describe the bug one month ago all working fine... btw you have the best real OFFLINE voice extention for obadooga ;) ### To Reproduce loadthe extention ### Expected behavior _No response_ ### Logs ```shell 12:58:44-519624 INFO Loading the extension "coqui_tts" 12:58:45-869491 ERROR Failed to load the extension "coqui_tts". Traceback (most recent call last): File "e:\text-generation-webui\modules\extensions.py", line 37, in load_extensions extension = importlib.import_module(f"extensions.{name}.script") File "e:\text-generation-webui\installer_files\env\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1050, in _gcd_import File "<frozen importlib._bootstrap>", line 1027, in _find_and_load File "<frozen importlib._bootstrap>", line 1006, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 688, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 883, in exec_module File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed File "e:\text-generation-webui\extensions\coqui_tts\script.py", line 10, in <module> from TTS.api import TTS File "e:\text-generation-webui\installer_files\env\lib\site-packages\TTS\api.py", line 9, in <module> from TTS.cs_api import CS_API File "e:\text-generation-webui\installer_files\env\lib\site-packages\TTS\cs_api.py", line 12, in <module> from TTS.utils.audio.numpy_transforms import save_wav File "e:\text-generation-webui\installer_files\env\lib\site-packages\TTS\utils\audio\__init__.py", line 1, in <module> from TTS.utils.audio.processor import AudioProcessor File "e:\text-generation-webui\installer_files\env\lib\site-packages\TTS\utils\audio\processor.py", line 10, in <module> from TTS.utils.audio.numpy_transforms import ( File "e:\text-generation-webui\installer_files\env\lib\site-packages\TTS\utils\audio\numpy_transforms.py", line 8, in <module> from librosa import magphase, pyin File "e:\text-generation-webui\installer_files\env\lib\site-packages\lazy_loader\__init__.py", line 78, in __getattr__ attr = getattr(submod, name) File "e:\text-generation-webui\installer_files\env\lib\site-packages\lazy_loader\__init__.py", line 77, in __getattr__ submod = importlib.import_module(submod_path) File "e:\text-generation-webui\installer_files\env\lib\importlib\__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "e:\text-generation-webui\installer_files\env\lib\site-packages\librosa\core\spectrum.py", line 12, in <module> from numba import jit File "e:\text-generation-webui\installer_files\env\lib\site-packages\numba\__init__.py", line 55, in <module> _ensure_critical_deps() File "e:\text-generation-webui\installer_files\env\lib\site-packages\numba\__init__.py", line 42, in _ensure_critical_deps raise ImportError("Numba needs NumPy 1.24 or less") ImportError: Numba needs NumPy 1.24 or less Running on local URL: http://127.0.0.1:7861 ``` ### Environment ```shell - ``` ### Additional context _No response_
1medium
Title: Add MindSpore support. Body: Dear maintainers, We are developing MindSpore adapted version of d2l-zh. However, it was found that the English version and the Chinese version were very different, could we just follow the newest version to develop? If possible, can you create a new repository like 'd2l-jax-colab'?
1medium
Title: Keybind to close Workflow Body: ### Feature Idea Dear ComfyUI Team, I would like to request the addition of a keyboard shortcut to quickly close the current workspace (workflow). This feature would improve efficiency and user experience by providing a faster way to manage workflows without relying solely on the mouse. Thank you for considering this suggestion! Best regards, ### Existing Solutions _No response_ ### Other _No response_
0easy
Title: [Bug]: UserWarning on skipping serialisation of PostGradPassManager Body: ### Your current environment <details> <summary>The output of `python collect_env.py`</summary> ```text PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 19.1.7 CMake version: version 3.31.4 Libc version: glibc-2.35 Python version: 3.11.10 (main, Oct 16 2024, 04:38:48) [Clang 18.1.8 ] (64-bit runtime) Python platform: Linux-5.15.0-134-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB Nvidia driver version: 565.57.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5317 CPU @ 3.00GHz CPU family: 6 Model: 106 Thread(s) per core: 1 Core(s) per socket: 12 Socket(s): 1 Stepping: 6 BogoMIPS: 6002.58 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush acpi mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single intel_ppin ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves umip pku ospke gfni vaes vpclmulqdq rdpid md_clear flush_l1d arch_capabilities Hypervisor vendor: Xen Virtualization type: full L1d cache: 576 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 15 MiB (12 instances) L3 cache: 216 MiB (12 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flashinfer-python==0.2.2.post1+cu124torch2.5 [pip3] mypy==1.15.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.1.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-ml-py==12.570.86 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] pyzmq==26.2.1 [pip3] sentence-transformers==3.2.1 [pip3] torch==2.6.0 [pip3] torchao==0.9.0 [pip3] torchaudio==2.5.1 [pip3] torchvision==0.21.0 [pip3] transformers==4.49.0 [pip3] transformers-stream-generator==0.0.5 [pip3] triton==3.2.0 [pip3] tritonclient==2.51.0 [pip3] vector-quantize-pytorch==1.21.2 [conda] Could not collect ROCM Version: Could not collect Neuron SDK Version: N/A vLLM Version: 0.7.3.dev758+g489b7938 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X 0-11 0 N/A Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks CUDA_PATH=/nix/store/skdw4l72lgrj628l0arj1m3ynlzfksi8-cuda-merged-12.4 LD_LIBRARY_PATH=/workspace/vllm/.venv/lib/python3.11/site-packages/cv2/../../lib64:/nix/store/lmyyfaz2amcs2an1f6m9h263151jiajy-cuda-merged-12.4/lib NCCL_CUMEM_ENABLE=0 TORCHINDUCTOR_COMPILE_THREADS=1 CUDA_MODULE_LOADING=LAZY ``` </details> ### 🐛 Describe the bug I have started to see this serialization warning whenever running `vllm serve` from time to time when running with v1: ```prolog /workspace/project/.venv/lib/python3.12/site-packages/torch/utils/_config_module.py:189: UserWarning: Skipping serialization of post_grad_custom_post_pass value <vllm.compilation.pass_manager.PostGradPassManager object at 0x7f23314f7c20> warnings.warn(f"Skipping serialization of {k} value {v}") ``` Not sure how impactful is this, or we can ignore this. ### Before submitting a new issue... - [x] Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the [documentation page](https://docs.vllm.ai/en/latest/), which can answer lots of frequently asked questions.
1medium
Title: Hipchat is dropping XMPP, we need to port the backend fully to their API. Body: In the past it was not possible but it now it should if they drop XMPP, reevaluate and remplace the XMPP calls to native API ones.
2hard
Title: LORA Body: An implementation of LORA and other tuning techniques would be nice.
2hard
Title: falcon.testing.* is not (re-)exported Body: Now that falcon 4 with type hints has been released 🎉 , we've enabled type checking using mypy as well for the falcon namespace for our codebase. Unfortunately, `falcon.testing.__init__` does not reexport the names it imports, which causes complaints by mypy, for example: ``` tests/test_subscription_data.py:13: error: Name "falcon.testing.TestClient" is not defined [name-defined] ``` (PR will follow)
1medium
Title: errorbar wont be plotted if using 'col' Body: using next command sns.catplot(data=df, x=x, y=y, hue=hue, kind='bar', height=6, aspect=1) **will display error bars** sns.catplot(data=df, x=x, y=y, hue=hue, **col=col,** kind='bar', height=6, aspect=1) or with some variations like adding **errorbar=('ci', 98)** **will not display error bars**
1medium
Title: [BUG] Body: **描述出现的错误** 大佬帮忙看一下是不是py的版本有问题。 module not found。 **bug复现** 点击build.bat ![image](https://user-images.githubusercontent.com/18677300/195736209-a314a226-5b20-4eda-90f2-2dcd47827533.png) 在build.bat加入--exclude-module _bootlocale后build成功 ![image](https://user-images.githubusercontent.com/18677300/195736274-5930dfc7-7b7a-4292-9256-6dcf4f7e67ee.png) 但是运行时报错 ![150f5d0f2b8a96c88a7b47237aab3e4](https://user-images.githubusercontent.com/18677300/195736435-0b7eae4c-962b-4bcb-83c8-6a143e8c8ba9.jpg) **桌面(请填写以下信息):** -操作系统:windows10 64bit -vpn代理 关闭 -python版本 Python 3.10.8 pyinstaller 3.6 **附文** 在此处添加有关此问题的文字。
1medium
Title: Restrict dash version to be less than 1.21.0 Body: For current codebase, restrict dash version to address #349
1medium
Title: Error during WebSocket handshake: Unexpected response code: 400 Body: I've a django socketio as server and reactjs as client When i'm running both cilent and server,i'm getting error WebSocket connection to 'ws://localhost:8000/socket.io/?EIO=3&transport=websocket' failed: Error during WebSocket handshake: Unexpected response code: 400 at client side and "GET /socket.io/?EIO=3&transport=websocket HTTP/1.1" 400 11 at server side socket.io-client verison-2.3.0 django version-3.1.3
1medium
Title: Using a timestamp column for facet_col or facet_row gives a KeyError Body: Using a column which is a `datetime64[ns]` (e.g. what `pd.to_datetime()` or `pd.date_range()` returns) for `facet_col` or `facet_row` gives a key error. ```python import pandas as pd import numpy as np import plotly.express as px df = pd.DataFrame({'Cost': np.random.normal(size=20), 'Date': pd.date_range(start='2023-04-20', periods=20)}) px.histogram(df, x='Cost', facet_col='Date') ``` This gives `KeyError: Timestamp('2023-04-20 00:00:00')`, as does `facet_row='Date'`. Converting the timestamp column to a string or a `datetime.date` (e.g. via `df['Date'].dt.date`) is a temporary workaround.
1medium
Title: How to link data inside topic model to original training data without preprocessed? Body: I use bertopic in Chinese . So I must split the text to token and add space between every 2 tokens, and remove stopwords, and some special symbol, than I input the processed text into bertopic. And the problem is how can I link the document to the oringinal training data without preprocessed? if I use documents in the model, the data are tokens without stopwords etc., its s weired. except transform every text again?Somebody get better ideas?
1medium
Title: Add a custom URL type instead of rely on `httpx.URL` Body: - We use the `httpx.URL` in the [ProxyConfiguration](https://github.com/apify/crawlee-python/blob/master/src/crawlee/proxy_configuration.py), in the tests and maybe in other places as well. - It kind of shot us into the foot in #618. - ~I suggest replacing it with our custom data type (either the Pydantic model or data class).~ - As Honza said, we could probably utilize some 3rd party library, [yarl](https://pypi.org/project/yarl/) seems like a good option. - Also please find other occurrences of the `httpx.URL` in the Crawlee and replace them with our custom type. - This applies also to tests: `httpbin: URL` - Keep in mind, that URLs in the `Request` model need to be serialized as strings.
1medium
Title: IPython 9 `logfile` causes crash Body: Running `ipython` with `--logfile` or `--logappend` causes a crash in `ipython>=9` e.g. `ipython --logfile=log.txt` This is failing due to the following error: ```py File "/usr/local/lib/python3.13/site-packages/IPython/core/interactiveshell.py", line 817, in init_logstart self.magic('logstart %s' % self.logfile) ^^^^^^^^^^ AttributeError: 'TerminalInteractiveShell' object has no attribute 'magic' ``` --- Using docker for reproducibility `docker pull python@sha256:385ccb8304f6330738a6d9e6fa0bd7608e006da7e15bc52b33b0398e1ba4a15b` (digest matches current `latest` tag) Installing `ipython==9.0.1` and running with `--logfile=log.txt` with verbose crash: ```sh docker run --rm python@sha256:385ccb8304f6330738a6d9e6fa0bd7608e006da7e15bc52b33b0398e1ba4a15b \ sh -c \ 'pip install -qq ipython ipython --logfile=log.txt --BaseIPythonApplication.verbose_crash=True cat /root/.ipython/Crash_report_ipython.txt' ``` <details> ``` --------------------------------------------------------------------------- --------------------------------------------------------------------------- AttributeError Python 3.13.2: /usr/local/bin/python3.13 Thu Mar 6 19:37:39 2025 A problem occurred executing Python code. Here is the sequence of function calls leading up to the error, with the most recent (innermost) call last. File /usr/local/bin/ipython:8 1 #!/usr/local/bin/python3.13 2 # -*- coding: utf-8 -*- 3 import re 4 import sys 5 from IPython import start_ipython 6 if __name__ == '__main__': 7 sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) ----> 8 sys.exit(start_ipython()) File /usr/local/lib/python3.13/site-packages/IPython/__init__.py:139, in start_ipython(argv=None, **kwargs={}) 113 def start_ipython(argv=None, **kwargs): 114 """Launch a normal IPython instance (as opposed to embedded) 115 116 `IPython.embed()` puts a shell in a particular calling scope, (...) 136 allowing configuration of the instance (see :ref:`terminal_options`). 137 """ 138 from IPython.terminal.ipapp import launch_new_instance --> 139 return launch_new_instance(argv=argv, **kwargs) launch_new_instance = <bound method Application.launch_instance of <class 'IPython.terminal.ipapp.TerminalIPythonApp'>> argv = None kwargs = {} File /usr/local/lib/python3.13/site-packages/traitlets/config/application.py:1074, in Application.launch_instance(cls=<class 'IPython.terminal.ipapp.TerminalIPythonApp'>, argv=None, **kwargs={}) 1067 @classmethod 1068 def launch_instance(cls, argv: ArgvType = None, **kwargs: t.Any) -> None: 1069 """Launch a global instance of this Application 1070 1071 If a global instance already exists, this reinitializes and starts it 1072 """ 1073 app = cls.instance(**kwargs) -> 1074 app.initialize(argv) app = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> argv = None 1075 app.start() File /usr/local/lib/python3.13/site-packages/traitlets/config/application.py:118, in catch_config_error.<locals>.inner(app=<IPython.terminal.ipapp.TerminalIPythonApp object>, *args=(None,), **kwargs={}) 115 @functools.wraps(method) 116 def inner(app: Application, *args: t.Any, **kwargs: t.Any) -> t.Any: 117 try: --> 118 return method(app, *args, **kwargs) method = <function TerminalIPythonApp.initialize at 0xffffa318f1a0> app = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> args = (None,) kwargs = {} 119 except (TraitError, ArgumentError) as e: 120 app.log.fatal("Bad config encountered during initialization: %s", e) 121 app.log.debug("Config at the time: %s", app.config) 122 app.exit(1) File /usr/local/lib/python3.13/site-packages/IPython/terminal/ipapp.py:286, in TerminalIPythonApp.initialize(self=<IPython.terminal.ipapp.TerminalIPythonApp object>, argv=None) 274 @catch_config_error 275 def initialize(self, argv=None): 276 """Do actions after construct, but before starting the app.""" 277 super(TerminalIPythonApp, self).initialize(argv) 278 if self.subapp is not None: 279 # don't bother initializing further, starting subapp 280 return 281 # print(self.extra_args) 282 if self.extra_args and not self.something_to_run: 283 self.file_to_run = self.extra_args[0] 284 self.init_path() 285 # create the shell --> 286 self.init_shell() self = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> 287 # and draw the banner 288 self.init_banner() 289 # Now a variety of things that happen after the banner is printed. 290 self.init_gui_pylab() 291 self.init_extensions() 292 self.init_code() File /usr/local/lib/python3.13/site-packages/IPython/terminal/ipapp.py:300, in TerminalIPythonApp.init_shell(self=<IPython.terminal.ipapp.TerminalIPythonApp object>) 294 def init_shell(self): 295 """initialize the InteractiveShell instance""" 296 # Create an InteractiveShell instance. 297 # shell.display_banner should always be False for the terminal 298 # based app, because we call shell.show_banner() by hand below 299 # so the banner shows *before* all extension loading stuff. --> 300 self.shell = self.interactive_shell_class.instance(parent=self, self = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> 301 profile_dir=self.profile_dir, 302 ipython_dir=self.ipython_dir, user_ns=self.user_ns) 303 self.shell.configurables.append(self) File /usr/local/lib/python3.13/site-packages/traitlets/config/configurable.py:583, in SingletonConfigurable.instance(cls=<class 'IPython.terminal.interactiveshell.TerminalInteractiveShell'>, *args=(), **kwargs={'ipython_dir': '/root/.ipython', 'parent': <IPython.terminal.ipapp.TerminalIPythonApp object>, 'profile_dir': <IPython.core.profiledir.ProfileDir object>, 'user_ns': None}) 553 @classmethod 554 def instance(cls: type[CT], *args: t.Any, **kwargs: t.Any) -> CT: 555 """Returns a global instance of this class. 556 557 This method create a new instance if none have previously been created (...) 579 True 580 """ 581 # Create and save the instance 582 if cls._instance is None: --> 583 inst = cls(*args, **kwargs) cls = <class 'IPython.terminal.interactiveshell.TerminalInteractiveShell'> args = () kwargs = {'parent': <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620>, 'profile_dir': <IPython.core.profiledir.ProfileDir object at 0xffffa354bcb0>, 'ipython_dir': '/root/.ipython', 'user_ns': None} 584 # Now make sure that the instance will also be returned by 585 # parent classes' _instance attribute. 586 for subclass in cls._walk_mro(): 587 subclass._instance = inst 589 if isinstance(cls._instance, cls): 590 return cls._instance 591 else: 592 raise MultipleInstanceError( 593 f"An incompatible sibling of '{cls.__name__}' is already instantiated" 594 f" as singleton: {type(cls._instance).__name__}" 595 ) File /usr/local/lib/python3.13/site-packages/IPython/terminal/interactiveshell.py:977, in TerminalInteractiveShell.__init__(self=<IPython.terminal.interactiveshell.TerminalInteractiveShell object>, *args=(), **kwargs={'ipython_dir': '/root/.ipython', 'parent': <IPython.terminal.ipapp.TerminalIPythonApp object>, 'profile_dir': <IPython.core.profiledir.ProfileDir object>, 'user_ns': None}) 976 def __init__(self, *args, **kwargs) -> None: --> 977 super(TerminalInteractiveShell, self).__init__(*args, **kwargs) self = <IPython.terminal.interactiveshell.TerminalInteractiveShell object at 0xffffa31bc590> args = () kwargs = {'parent': <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620>, 'profile_dir': <IPython.core.profiledir.ProfileDir object at 0xffffa354bcb0>, 'ipython_dir': '/root/.ipython', 'user_ns': None} TerminalInteractiveShell = <class 'IPython.terminal.interactiveshell.TerminalInteractiveShell'> 978 self._set_autosuggestions(self.autosuggestions_provider) 979 self.init_prompt_toolkit_cli() 980 self.init_term_title() 981 self.keep_running = True 982 self._set_formatter(self.autoformatter) File /usr/local/lib/python3.13/site-packages/IPython/core/interactiveshell.py:650, in InteractiveShell.__init__(self=<IPython.terminal.interactiveshell.TerminalInteractiveShell object>, ipython_dir='/root/.ipython', profile_dir=<IPython.core.profiledir.ProfileDir object>, user_module=None, user_ns=None, custom_exceptions=((), None), **kwargs={'parent': <IPython.terminal.ipapp.TerminalIPythonApp object>}) 632 self.init_logger() 633 self.init_builtins() 635 # The following was in post_config_initialization 636 self.raw_input_original = input 637 self.init_completer() 638 # TODO: init_io() needs to happen before init_traceback handlers 639 # because the traceback handlers hardcode the stdout/stderr streams. 640 # This logic in in debugger.Pdb and should eventually be changed. 641 self.init_io() 642 self.init_traceback_handlers(custom_exceptions) 643 self.init_prompts() 644 self.init_display_formatter() 645 self.init_display_pub() 646 self.init_data_pub() 647 self.init_displayhook() 648 self.init_magics() 649 self.init_alias() --> 650 self.init_logstart() self = <IPython.terminal.interactiveshell.TerminalInteractiveShell object at 0xffffa31bc590> 651 self.init_pdb() 652 self.init_extension_manager() 653 self.init_payload() 654 self.events.trigger('shell_initialized', self) 655 atexit.register(self.atexit_operations) 657 # The trio runner is used for running Trio in the foreground thread. It 658 # is different from `_trio_runner(async_fn)` in `async_helpers.py` 659 # which calls `trio.run()` for every cell. This runner runs all cells 660 # inside a single Trio event loop. If used, it is set from 661 # `ipykernel.kernelapp`. 662 self.trio_runner = None File /usr/local/lib/python3.13/site-packages/IPython/core/interactiveshell.py:817, in InteractiveShell.init_logstart(self=<IPython.terminal.interactiveshell.TerminalInteractiveShell object>) 811 def init_logstart(self): 812 """Initialize logging in case it was requested at the command line. 813 """ 814 if self.logappend: 815 self.magic('logstart %s append' % self.logappend) 816 elif self.logfile: --> 817 self.magic('logstart %s' % self.logfile) self = <IPython.terminal.interactiveshell.TerminalInteractiveShell object at 0xffffa31bc590> 818 elif self.logstart: 819 self.magic('logstart') AttributeError: 'TerminalInteractiveShell' object has no attribute 'magic' ********************************************************************** Oops, ipython crashed. We do our best to make it stable, but... A crash report was automatically generated with the following information: - A verbatim copy of the crash traceback. - A copy of your input history during this session. - Data on your current ipython configuration. It was left in the file named: '/root/.ipython/Crash_report_ipython.txt' If you can email this file to the developers, the information in it will help them in understanding and correcting the problem. You can mail it to: The IPython Development Team at [email protected] with the subject 'ipython Crash Report'. If you want to do it now, the following command will work (under Unix): mail -s 'ipython Crash Report' [email protected] < /root/.ipython/Crash_report_ipython.txt In your email, please also include information about: - The operating system under which the crash happened: Linux, macOS, Windows, other, and which exact version (for example: Ubuntu 16.04.3, macOS 10.13.2, Windows 10 Pro), and whether it is 32-bit or 64-bit; - How ipython was installed: using pip or conda, from GitHub, as part of a Docker container, or other, providing more detail if possible; - How to reproduce the crash: what exact sequence of instructions can one input to get the same crash? Ideally, find a minimal yet complete sequence of instructions that yields the crash. To ensure accurate tracking of this issue, please file a report about it at: https://github.com/ipython/ipython/issues Hit <Enter> to quit (your terminal may close):Error in sys.excepthook: Traceback (most recent call last): File "/usr/local/lib/python3.13/site-packages/IPython/core/application.py", line 288, in excepthook return self.crash_handler(etype, evalue, tb) ~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.13/site-packages/IPython/core/crashhandler.py", line 206, in __call__ builtin_mod.input("Hit <Enter> to quit (your terminal may close):") ~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ EOFError: EOF when reading a line Original exception was: Traceback (most recent call last): File "/usr/local/bin/ipython", line 8, in <module> sys.exit(start_ipython()) ~~~~~~~~~~~~~^^ File "/usr/local/lib/python3.13/site-packages/IPython/__init__.py", line 139, in start_ipython return launch_new_instance(argv=argv, **kwargs) File "/usr/local/lib/python3.13/site-packages/traitlets/config/application.py", line 1074, in launch_instance app.initialize(argv) ~~~~~~~~~~~~~~^^^^^^ File "/usr/local/lib/python3.13/site-packages/traitlets/config/application.py", line 118, in inner return method(app, *args, **kwargs) File "/usr/local/lib/python3.13/site-packages/IPython/terminal/ipapp.py", line 286, in initialize self.init_shell() ~~~~~~~~~~~~~~~^^ File "/usr/local/lib/python3.13/site-packages/IPython/terminal/ipapp.py", line 300, in init_shell self.shell = self.interactive_shell_class.instance(parent=self, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^ profile_dir=self.profile_dir, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ipython_dir=self.ipython_dir, user_ns=self.user_ns) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.13/site-packages/traitlets/config/configurable.py", line 583, in instance inst = cls(*args, **kwargs) File "/usr/local/lib/python3.13/site-packages/IPython/terminal/interactiveshell.py", line 977, in __init__ super(TerminalInteractiveShell, self).__init__(*args, **kwargs) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.13/site-packages/IPython/core/interactiveshell.py", line 650, in __init__ self.init_logstart() ~~~~~~~~~~~~~~~~~~^^ File "/usr/local/lib/python3.13/site-packages/IPython/core/interactiveshell.py", line 817, in init_logstart self.magic('logstart %s' % self.logfile) ^^^^^^^^^^ AttributeError: 'TerminalInteractiveShell' object has no attribute 'magic' *************************************************************************** IPython post-mortem report {'commit_hash': 'd64897cf0', 'commit_source': 'installation', 'default_encoding': 'utf-8', 'ipython_path': '/usr/local/lib/python3.13/site-packages/IPython', 'ipython_version': '9.0.1', 'os_name': 'posix', 'platform': 'Linux-6.10.14-linuxkit-aarch64-with-glibc2.36', 'sys_executable': '/usr/local/bin/python3.13', 'sys_platform': 'linux', 'sys_version': '3.13.2 (main, Feb 25 2025, 21:31:02) [GCC 12.2.0]'} *************************************************************************** Application name: ipython Current user configuration structure: {'BaseIPythonApplication': {'verbose_crash': True}, 'TerminalInteractiveShell': {'logfile': 'log.txt'}} *************************************************************************** Crash traceback: --------------------------------------------------------------------------- --------------------------------------------------------------------------- AttributeError Python 3.13.2: /usr/local/bin/python3.13 Thu Mar 6 19:37:39 2025 A problem occurred executing Python code. Here is the sequence of function calls leading up to the error, with the most recent (innermost) call last. File /usr/local/bin/ipython:8 1 #!/usr/local/bin/python3.13 2 # -*- coding: utf-8 -*- 3 import re 4 import sys 5 from IPython import start_ipython 6 if __name__ == '__main__': 7 sys.argv[0] = re.sub(r'(-script\.pyw|\.exe)?$', '', sys.argv[0]) ----> 8 sys.exit(start_ipython()) File /usr/local/lib/python3.13/site-packages/IPython/__init__.py:139, in start_ipython(argv=None, **kwargs={}) 113 def start_ipython(argv=None, **kwargs): 114 """Launch a normal IPython instance (as opposed to embedded) 115 116 `IPython.embed()` puts a shell in a particular calling scope, (...) 136 allowing configuration of the instance (see :ref:`terminal_options`). 137 """ 138 from IPython.terminal.ipapp import launch_new_instance --> 139 return launch_new_instance(argv=argv, **kwargs) launch_new_instance = <bound method Application.launch_instance of <class 'IPython.terminal.ipapp.TerminalIPythonApp'>> argv = None kwargs = {} File /usr/local/lib/python3.13/site-packages/traitlets/config/application.py:1074, in Application.launch_instance(cls=<class 'IPython.terminal.ipapp.TerminalIPythonApp'>, argv=None, **kwargs={}) 1067 @classmethod 1068 def launch_instance(cls, argv: ArgvType = None, **kwargs: t.Any) -> None: 1069 """Launch a global instance of this Application 1070 1071 If a global instance already exists, this reinitializes and starts it 1072 """ 1073 app = cls.instance(**kwargs) -> 1074 app.initialize(argv) app = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> argv = None 1075 app.start() File /usr/local/lib/python3.13/site-packages/traitlets/config/application.py:118, in catch_config_error.<locals>.inner(app=<IPython.terminal.ipapp.TerminalIPythonApp object>, *args=(None,), **kwargs={}) 115 @functools.wraps(method) 116 def inner(app: Application, *args: t.Any, **kwargs: t.Any) -> t.Any: 117 try: --> 118 return method(app, *args, **kwargs) method = <function TerminalIPythonApp.initialize at 0xffffa318f1a0> app = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> args = (None,) kwargs = {} 119 except (TraitError, ArgumentError) as e: 120 app.log.fatal("Bad config encountered during initialization: %s", e) 121 app.log.debug("Config at the time: %s", app.config) 122 app.exit(1) File /usr/local/lib/python3.13/site-packages/IPython/terminal/ipapp.py:286, in TerminalIPythonApp.initialize(self=<IPython.terminal.ipapp.TerminalIPythonApp object>, argv=None) 274 @catch_config_error 275 def initialize(self, argv=None): 276 """Do actions after construct, but before starting the app.""" 277 super(TerminalIPythonApp, self).initialize(argv) 278 if self.subapp is not None: 279 # don't bother initializing further, starting subapp 280 return 281 # print(self.extra_args) 282 if self.extra_args and not self.something_to_run: 283 self.file_to_run = self.extra_args[0] 284 self.init_path() 285 # create the shell --> 286 self.init_shell() self = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> 287 # and draw the banner 288 self.init_banner() 289 # Now a variety of things that happen after the banner is printed. 290 self.init_gui_pylab() 291 self.init_extensions() 292 self.init_code() File /usr/local/lib/python3.13/site-packages/IPython/terminal/ipapp.py:300, in TerminalIPythonApp.init_shell(self=<IPython.terminal.ipapp.TerminalIPythonApp object>) 294 def init_shell(self): 295 """initialize the InteractiveShell instance""" 296 # Create an InteractiveShell instance. 297 # shell.display_banner should always be False for the terminal 298 # based app, because we call shell.show_banner() by hand below 299 # so the banner shows *before* all extension loading stuff. --> 300 self.shell = self.interactive_shell_class.instance(parent=self, self = <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620> 301 profile_dir=self.profile_dir, 302 ipython_dir=self.ipython_dir, user_ns=self.user_ns) 303 self.shell.configurables.append(self) File /usr/local/lib/python3.13/site-packages/traitlets/config/configurable.py:583, in SingletonConfigurable.instance(cls=<class 'IPython.terminal.interactiveshell.TerminalInteractiveShell'>, *args=(), **kwargs={'ipython_dir': '/root/.ipython', 'parent': <IPython.terminal.ipapp.TerminalIPythonApp object>, 'profile_dir': <IPython.core.profiledir.ProfileDir object>, 'user_ns': None}) 553 @classmethod 554 def instance(cls: type[CT], *args: t.Any, **kwargs: t.Any) -> CT: 555 """Returns a global instance of this class. 556 557 This method create a new instance if none have previously been created (...) 579 True 580 """ 581 # Create and save the instance 582 if cls._instance is None: --> 583 inst = cls(*args, **kwargs) cls = <class 'IPython.terminal.interactiveshell.TerminalInteractiveShell'> args = () kwargs = {'parent': <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620>, 'profile_dir': <IPython.core.profiledir.ProfileDir object at 0xffffa354bcb0>, 'ipython_dir': '/root/.ipython', 'user_ns': None} 584 # Now make sure that the instance will also be returned by 585 # parent classes' _instance attribute. 586 for subclass in cls._walk_mro(): 587 subclass._instance = inst 589 if isinstance(cls._instance, cls): 590 return cls._instance 591 else: 592 raise MultipleInstanceError( 593 f"An incompatible sibling of '{cls.__name__}' is already instantiated" 594 f" as singleton: {type(cls._instance).__name__}" 595 ) File /usr/local/lib/python3.13/site-packages/IPython/terminal/interactiveshell.py:977, in TerminalInteractiveShell.__init__(self=<IPython.terminal.interactiveshell.TerminalInteractiveShell object>, *args=(), **kwargs={'ipython_dir': '/root/.ipython', 'parent': <IPython.terminal.ipapp.TerminalIPythonApp object>, 'profile_dir': <IPython.core.profiledir.ProfileDir object>, 'user_ns': None}) 976 def __init__(self, *args, **kwargs) -> None: --> 977 super(TerminalInteractiveShell, self).__init__(*args, **kwargs) self = <IPython.terminal.interactiveshell.TerminalInteractiveShell object at 0xffffa31bc590> args = () kwargs = {'parent': <IPython.terminal.ipapp.TerminalIPythonApp object at 0xffffa354b620>, 'profile_dir': <IPython.core.profiledir.ProfileDir object at 0xffffa354bcb0>, 'ipython_dir': '/root/.ipython', 'user_ns': None} TerminalInteractiveShell = <class 'IPython.terminal.interactiveshell.TerminalInteractiveShell'> 978 self._set_autosuggestions(self.autosuggestions_provider) 979 self.init_prompt_toolkit_cli() 980 self.init_term_title() 981 self.keep_running = True 982 self._set_formatter(self.autoformatter) File /usr/local/lib/python3.13/site-packages/IPython/core/interactiveshell.py:650, in InteractiveShell.__init__(self=<IPython.terminal.interactiveshell.TerminalInteractiveShell object>, ipython_dir='/root/.ipython', profile_dir=<IPython.core.profiledir.ProfileDir object>, user_module=None, user_ns=None, custom_exceptions=((), None), **kwargs={'parent': <IPython.terminal.ipapp.TerminalIPythonApp object>}) 632 self.init_logger() 633 self.init_builtins() 635 # The following was in post_config_initialization 636 self.raw_input_original = input 637 self.init_completer() 638 # TODO: init_io() needs to happen before init_traceback handlers 639 # because the traceback handlers hardcode the stdout/stderr streams. 640 # This logic in in debugger.Pdb and should eventually be changed. 641 self.init_io() 642 self.init_traceback_handlers(custom_exceptions) 643 self.init_prompts() 644 self.init_display_formatter() 645 self.init_display_pub() 646 self.init_data_pub() 647 self.init_displayhook() 648 self.init_magics() 649 self.init_alias() --> 650 self.init_logstart() self = <IPython.terminal.interactiveshell.TerminalInteractiveShell object at 0xffffa31bc590> 651 self.init_pdb() 652 self.init_extension_manager() 653 self.init_payload() 654 self.events.trigger('shell_initialized', self) 655 atexit.register(self.atexit_operations) 657 # The trio runner is used for running Trio in the foreground thread. It 658 # is different from `_trio_runner(async_fn)` in `async_helpers.py` 659 # which calls `trio.run()` for every cell. This runner runs all cells 660 # inside a single Trio event loop. If used, it is set from 661 # `ipykernel.kernelapp`. 662 self.trio_runner = None File /usr/local/lib/python3.13/site-packages/IPython/core/interactiveshell.py:817, in InteractiveShell.init_logstart(self=<IPython.terminal.interactiveshell.TerminalInteractiveShell object>) 811 def init_logstart(self): 812 """Initialize logging in case it was requested at the command line. 813 """ 814 if self.logappend: 815 self.magic('logstart %s append' % self.logappend) 816 elif self.logfile: --> 817 self.magic('logstart %s' % self.logfile) self = <IPython.terminal.interactiveshell.TerminalInteractiveShell object at 0xffffa31bc590> 818 elif self.logstart: 819 self.magic('logstart') AttributeError: 'TerminalInteractiveShell' object has no attribute 'magic' *************************************************************************** History of session input: ``` </details>
1medium
Title: parametrize_with_cases: map case variables by name rather than position (dict vs list) Body: Is it possible to use `parametrize_with_cases` so that the parameters of decorated function are mapped from a dictionary of case data, rather than a list of case data? I'm using the `cases` parameter to generate the case data. Below is an example that doesn't work (but wish it did): ```python import pytest_cases def _get_cases(): ''' Return a list of test cases to ensure that the addition operator works as expected ''' return [ # test case 1 { "value1": 1, "value2": 2, "expected": 3, }, # test case 2 { "value1": 10, "value2": 20, "expected": 30, }, ] @pytest_cases.parametrize(case=_get_cases()) def get_cases(case): return case @pytest_cases.parametrize_with_cases('value1, value2, expected', cases=get_cases) def test_addition(value1, value2, expected): assert value1 + value2 == expected ``` Resulting errors... ``` FAILED debug_pytest_cases.py::test_addition[get_cases-case={'value1': 1, 'value2': 2, 'expected': 3}] - Exception: Unable to unpack parameter value to a tuple: dict_values([1, 2, 3]) FAILED debug_pytest_cases.py::test_addition[get_cases-case={'value1': 10, 'value2': 20, 'expected': 30}] - Exception: Unable to unpack parameter value to a tuple: dict_values([10, 20, 30]) ``` This can be "fixed", by having each case be a list (rather than a dict).... ```python @pytest_cases.parametrize(case=_get_cases()) def get_cases(case): return case.values() # return the case as list of values only, e.g. [1,2,3] ``` ... but obviously we lose the name mapping, resulting in the case variables getting improperly mapped into the test function... ``` ========================================= FAILURES ========================================= __________ test_addition[get_cases-case={'expected': 3, 'value2': 2, 'value1': 1}] __________ value1 = 3, value2 = 2, expected = 1 @pytest_cases.parametrize_with_cases('value1, value2, expected', cases=get_cases) def test_addition(value1, value2, expected): > assert value1 + value2 == expected E assert (3 + 2) == 1 ``` So instead of simply converting the case data into a list of values ( via `case.values()`), we could convert it to a list of tuples via `case.items()` , e.g. `[("expected": 3), ("value1": 1), ("value2": 2)]` But now we need to unpack these values in our test function... ```python @pytest_cases.parametrize_with_cases('case_data', cases=get_cases) def test_addition(case_data): # convert case_data back into it's original dictionary form case_data = dict(case_data) # unpack variables from dict. brittle and ugly :( value1, value2, expected = [case_data[k] for k in ['value1', 'value2', 'expected']] assert value1 + value2 == expected ``` This certainly works (I've been using it for a couple years), but it has a few drawbacks: - Every test function will always need this same boiler plate code (unpacking the case data into discrete variables) - The unpacking logic is brittle. It requires parameters on both side of `=` to mirror one another (including their order). In conclusion, I think it could be notably simpler/convenient to map case data (a dictionary of values) directly to the function parameters (by name) so that no unpacking is necessary (as shown in the top/original example). I realize that there's certainly some caveats with this approach (e.g. parameter name clashes, illegal parameter names, etc), but I imagine this wouldn't be the first time such issues/compromises needed to be considered. ... OR perhaps this functionality already exists and I just need to RTFM :) Thank you!
2hard
Title: Document table callbacks and configs Body: ## Checklist - [ ] on_changelog_event - [ ] on_recover
1medium
Title: Option to keep output style Body: It would be nice to have an option to keep the way output is displayed (between standard, scrolled, and collapsed) since it is more part of formatting than of outputs (I am enabling scrolling when I know that the output will be large, but when I still want to display it).
1medium
Title: how to deploy mercury to k8s cluster? Body:
1medium
Title: orange associate can't be loaded Body: <!-- Thanks for taking the time to report a bug! If you're raising an issue about an add-on (i.e., installed via Options > Add-ons), raise an issue in the relevant add-on's issue tracker instead. See: https://github.com/biolab?q=orange3 To fix the bug, we need to be able to reproduce it. Please answer the following questions to the best of your ability. --> **What's wrong?** I have added an add-in called Associate. Although all seems wel after installation- meaning that all the necessary source files seem in place, the log shows a problem in loading Associate and some other things ``` 2023-09-29 01:29:44,099:INFO:orangecanvas.registry.discovery: Could not import 'orangecontrib.associate.widgets.owassociate'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/associate/widgets/owassociate.py", line 9, in <module> from AnyQt.QtWidgets import QTableView, qApp, QGridLayout, QLabel ImportError: cannot import name 'qApp' from 'AnyQt.QtWidgets' (/home/frankc/orange/lib/python3.11/site-packages/AnyQt/QtWidgets.py) 2023-09-29 01:29:44,100:INFO:orangecanvas.registry.discovery: Could not import 'orangecontrib.associate.widgets.owitemsets'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/associate/widgets/owitemsets.py", line 9, in <module> from AnyQt.QtWidgets import QTreeWidget, QTreeWidgetItem, qApp ImportError: cannot import name 'qApp' from 'AnyQt.QtWidgets' (/home/frankc/orange/lib/python3.11/site-packages/AnyQt/QtWidgets.py) 2023-09-29 01:29:44,144:INFO:orangecanvas.registry.discovery: Could not import 'orangecontrib.educational.widgets.ow1ka'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/educational/widgets/ow1ka.py", line 24, in <module> from Orange.widgets.utils.webview import wait ImportError: cannot import name 'wait' from 'Orange.widgets.utils.webview' (/home/frankc/orange/lib/python3.11/site-packages/Orange/widgets/utils/webview.py) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/educational/widgets/ow1ka.py", line 27, in <module> from AnyQt.QtWidgets import qApp ImportError: cannot import name 'qApp' from 'AnyQt.QtWidgets' (/home/frankc/orange/lib/python3.11/site-packages/AnyQt/QtWidgets.py) 2023-09-29 01:29:44,146:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/explain/widgets/owexplainfeaturebase.py'. 2023-09-29 01:29:44,150:WARNING:root: No module named 'tempeh': LawSchoolGPADataset will be unavailable. To install, run: pip install 'aif360[LawSchoolGPA]' 2023-09-29 01:29:45,819:WARNING:root: No module named 'fairlearn': ExponentiatedGradientReduction will be unavailable. To install, run: pip install 'aif360[Reductions]' 2023-09-29 01:29:45,820:WARNING:root: No module named 'fairlearn': GridSearchReduction will be unavailable. To install, run: pip install 'aif360[Reductions]' 2023-09-29 01:29:45,820:WARNING:root: No module named 'fairlearn': GridSearchReduction will be unavailable. To install, run: pip install 'aif360[Reductions]' 2023-09-29 01:29:45,841:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/fairness/widgets/utils.py'. 2023-09-29 01:29:45,842:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/geo/widgets/plotutils.py'. 2023-09-29 01:29:45,891:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/survival_analysis/widgets/data.py'. 2023-09-29 01:29:46,036:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableCategory'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableCategory.py", line 27, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,037:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableContext'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableContext.py", line 27, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,038:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableConvert'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableConvert.py", line 27, in <module> from PyQt5.QtWidgets import QMessageBox, QApplication, QFileDialog ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,039:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableCooccurrence'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableCooccurrence.py", line 30, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,040:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableCount'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableCount.py", line 28, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,041:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableDisplay'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableDisplay.py", line 28, in <module> from PyQt5.QtWidgets import QTextBrowser, QFileDialog, QMessageBox, QApplication ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,042:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableExtractXML'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableExtractXML.py", line 25, in <module> from PyQt5.QtGui import QFont ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,044:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableInterchange'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableInterchange.py", line 27, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,045:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableIntersect'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableIntersect.py", line 27, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,046:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableLength'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableLength.py", line 28, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,047:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableMerge'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableMerge.py", line 27, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,048:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableMessage'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableMessage.py", line 26, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,049:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextablePreprocess'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextablePreprocess.py", line 27, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,050:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableRecode'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableRecode.py", line 25, in <module> from PyQt5.QtGui import QFont ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,051:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableSegment'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableSegment.py", line 25, in <module> from PyQt5.QtGui import QFont ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,052:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableSelect'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableSelect.py", line 31, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,053:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableTextField'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableTextField.py", line 28, in <module> from PyQt5.QtWidgets import QPlainTextEdit ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,053:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableTextFiles'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableTextFiles.py", line 30, in <module> from PyQt5.QtCore import QTimer ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,054:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableTreetagger'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableTreetagger.py", line 32, in <module> from PyQt5.QtWidgets import QFileDialog, QMessageBox ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,055:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableURLs'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableURLs.py", line 31, in <module> from PyQt5.QtCore import QTimer ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,056:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.OWTextableVariety'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/OWTextableVariety.py", line 28, in <module> from .TextableUtils import ( File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,058:INFO:orangecanvas.registry.discovery: Could not import '_textable.widgets.TextableUtils'. Traceback (most recent call last): File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 309, in iter_widget_descriptions module = asmodule(name) ^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/registry/discovery.py", line 552, in asmodule return __import__(module, fromlist=[""]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/frankc/orange/lib/python3.11/site-packages/_textable/widgets/TextableUtils.py", line 909, in <module> from PyQt5.QtCore import QTimer, QEventLoop ModuleNotFoundError: No module named 'PyQt5' 2023-09-29 01:29:46,328:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/timeseries/widgets/_owmodel.py'. 2023-09-29 01:29:46,328:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/timeseries/widgets/_rangeslider.py'. 2023-09-29 01:29:46,328:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/timeseries/widgets/owperiodbase.py'. 2023-09-29 01:29:46,329:INFO:orangecanvas.registry.discovery: Ignoring '/home/frankc/orange/lib/python3.11/site-packages/orangecontrib/timeseries/widgets/utils.py'. 2023-09-29 01:29:46,334:INFO:orangecanvas.main: Adding search path '/home/frankc/orange/lib/python3.11/site-packages/orangecanvas/styles/orange' for prefix, 'canvas_icons' ``` Constantly it show that QApp can't be found **How can we reproduce the problem?** <!-- Upload a zip with the .ows file and data. --> <!-- Describe the steps (open this widget, click there, then add this...) --> **What's your environment?** <!-- To find your Orange version, see "Help → About → Version" or `Orange.version.full_version` in code --> - Operating system: Manjaro - Orange version: 3.36.1 - How you installed Orange: through pip in a virtual environment.
1medium
Title: User might think that HiveContext creation is taking longer than it is Body: Last cell output says "Creating HiveContext as 'sqlContext'" but does not tell user when context has been created and code is now running.
0easy