import from S3
Browse files- python-lines.py +95 -0
python-lines.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""News headlines and categories dataset."""
|
| 18 |
+
|
| 19 |
+
from __future__ import absolute_import, division, print_function
|
| 20 |
+
|
| 21 |
+
import json
|
| 22 |
+
|
| 23 |
+
import datasets
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
_DESCRIPTION = """\
|
| 27 |
+
Dataset of single lines of Python code taken from the [CodeSearchNet](https://github.com/github/CodeSearchNet) dataset.
|
| 28 |
+
|
| 29 |
+
Context
|
| 30 |
+
|
| 31 |
+
This dataset allows checking the validity of Variational-Autoencoder latent spaces by testing what percentage of random/intermediate latent points can be greedily decoded into valid Python code.
|
| 32 |
+
|
| 33 |
+
Content
|
| 34 |
+
|
| 35 |
+
Each row has a parsable line of source code.
|
| 36 |
+
{'text': '{python source code line}'}
|
| 37 |
+
|
| 38 |
+
Most lines are < 100 characters while all are under 125 characters.
|
| 39 |
+
|
| 40 |
+
Contains 2.6 million lines.
|
| 41 |
+
|
| 42 |
+
All code is in parsable into a python3 ast.
|
| 43 |
+
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
_CITATION = """\
|
| 47 |
+
@dataset{dataset,
|
| 48 |
+
author = {Fraser Greenlee},
|
| 49 |
+
year = {2020},
|
| 50 |
+
month = {12},
|
| 51 |
+
pages = {},
|
| 52 |
+
title = {Python single line dataset.},
|
| 53 |
+
doi = {}
|
| 54 |
+
}
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
_TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/python-lines/train.jsonl"
|
| 58 |
+
_TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/python-lines/test.jsonl"
|
| 59 |
+
_VALIDATION_DOWNLOAD_URL = "https://raw.githubusercontent.com/Fraser-Greenlee/my-huggingface-datasets/master/data/python-lines/valid.jsonl"
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class PythonLines(datasets.GeneratorBasedBuilder):
|
| 63 |
+
"""Python lines dataset."""
|
| 64 |
+
|
| 65 |
+
def _info(self):
|
| 66 |
+
return datasets.DatasetInfo(
|
| 67 |
+
description=_DESCRIPTION,
|
| 68 |
+
features=datasets.Features(
|
| 69 |
+
{
|
| 70 |
+
'text': datasets.Value("string"),
|
| 71 |
+
}
|
| 72 |
+
),
|
| 73 |
+
homepage="https://github.com/Fraser-Greenlee/my-huggingface-datasets",
|
| 74 |
+
citation=_CITATION,
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def _split_generators(self, dl_manager):
|
| 78 |
+
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
| 79 |
+
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
| 80 |
+
validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL)
|
| 81 |
+
return [
|
| 82 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
| 83 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
| 84 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}),
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
def _generate_examples(self, filepath):
|
| 88 |
+
"""Generate examples."""
|
| 89 |
+
with open(filepath, encoding="utf-8") as json_lines_file:
|
| 90 |
+
data = []
|
| 91 |
+
for line in json_lines_file:
|
| 92 |
+
data.append(json.loads(line))
|
| 93 |
+
|
| 94 |
+
for id_, row in enumerate(data):
|
| 95 |
+
yield id_, row
|