File size: 26,140 Bytes
f9d28cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 |
import Mathlib
def solveAdd (a b:Int): Int
:= b-a
theorem solveAdd_correct (a b: Int): a + (solveAdd a b) =b
:= by simp[solveAdd]
def solveAdd0(a:Int): Int
:= -a
theorem solveAdd0_correct(a: Int): a +(solveAdd0 a)=0
:= by simp[solveAdd0]
def solveSub(a b:Int): Int
:= a-b
theorem solveSub_correct(a b:Int): a - (solveSub a b)=b
:= by simp[solveSub]
def solve1x1(a b: Rat): Option Rat :=
if a = 0 then
if b=0 then
some 0
else
none
else
some (b/a)
theorem solve1x1_correct(a b:Rat): (∃ x, a*x=b) -> a * (solve1x1 a b).get! =b
:= by
intro hsol
simp[solve1x1]
split_ifs
next hb=>simp[hb]
next ha hb=> simp[ha] at hsol; rw[hsol] at hb; contradiction
next ha=>
simp
simp[Rat.div_def]
simp[Rat.mul_comm b]
simp[← Rat.mul_assoc]
have: a*a.inv=1 :=by{
have hainv: a⁻¹ = a.inv :=by {
exact rfl
}
rw[← hainv]
rw[Rat.mul_inv_cancel]
assumption
}
simp[this]
theorem solve1x1_none(a b:Rat): (Not (∃ x, a*x=b)) -> solve1x1 a b=none
:= by
intro h
simp[solve1x1]
split_ifs
next ha hb=> simp[ha] at h;rw[hb] at h; contradiction
next=>rfl
next ha=>
contrapose! h
use b/a
exact mul_div_cancel₀ b ha
def solveMul(a: Rat): Rat
:= if a=0 then 0 else 1/a
theorem solveMul_correct(a:Rat): (∃ x, a*x=1)->a * (solveMul a)=1
:= by
intro h
simp[solveMul]
split
next ha=>
simp[ha] at h
next ha=>
exact Rat.mul_inv_cancel a ha
theorem solveMul_nosol (a:Rat): (Not (∃ x, a*x=1)) ->solveMul a =0
:= by
intro h
simp[solveMul]
contrapose! h
use 1/a
exact mul_one_div_cancel h
def solveDiv(a b:Rat) (ha: a≠ 0)(hb: b≠ 0): Rat
:= a/b
theorem solveDiv_correct(a b:Rat)(ha:a≠ 0)(hb: b≠ 0):
a / (solveDiv a b ha hb)= b
:= by
simp[solveDiv]
rw[← div_mul]
rw[div_self (by simp[ha])]
simp
def isPrime(a: Nat): Bool
:=
if a<=1 then false
else
let rec helper (cur: Nat):Bool:=
if cur>=a then true
else if a%cur=0 then false
else helper (cur+1)
termination_by a-cur
decreasing_by{
simp_wf
have hacur: a>cur:=by omega
exact Nat.sub_succ_lt_self a cur hacur
}
helper 2
theorem isPrime_correct(a: Nat):
(isPrime a) <-> Nat.Prime a := by{
constructor
· {
unfold isPrime
split
simp
have: ∀ cur:Nat, cur>=2->(∀x:Nat, (x>=2 ∧ x< cur)-> a%x !=0) ->isPrime.helper a cur ->a.Prime:=by {
intro cur
intro hcur2
induction cur using isPrime.helper.induct
exact a
next ha1 c hcga =>
have hhelp: isPrime.helper a c =true:=by {
unfold isPrime.helper
simp[hcga]
}
simp[hhelp]
contrapose!
intro hnp
apply Nat.exists_dvd_of_not_prime2 at hnp
rcases hnp with ⟨ k, hnp'⟩
use k
simp[hnp']
omega
omega
next ha c hca hmod =>
have hhelp: isPrime.helper a c=false:=by{
unfold isPrime.helper
simp[hmod,hca]
}
simp[hhelp]
next ha c hca hmod ih =>
unfold isPrime.helper
split
simp
have: c>=a :=by assumption
contradiction
have: c+1>=2 :=by omega
simp[ this] at ih
simp
intro hx
apply ih
intro x
intro hx2
intro hxlt
cases hc1x: c-x
have: c=x :=by {
omega
}
rw[← this]
assumption
have: x<c :=by{
omega
}
apply hx
assumption
assumption
}
apply this
omega
intro x
omega
}
next=>
contrapose!
unfold isPrime
split
simp
have: a<=1 :=by assumption
have ha2: a ≠ 2 :=by omega
have ha3: a≠ 3 :=by omega
intro hp
have h5p: 5<=a :=by {
exact Nat.Prime.five_le_of_ne_two_of_ne_three hp ha2 ha3 --Prime.five_le_of_ne_two_of_ne_three a hp ha2 ha3
}
omega
have: ∀cur: Nat, cur>=2 ->isPrime.helper a cur ≠ true ->¬ a.Prime :=by{
intro cur
intro hcur2
induction cur using isPrime.helper.induct
exact a
next ha1 x hxa=>
unfold isPrime.helper
simp[hxa]
next ha1 x hxa hmod =>
unfold isPrime.helper
simp[hxa,hmod]
have :x ∣ a :=by omega
have hxneqa: x≠ a :=by omega
have hxneq1: x≠ 1 :=by omega
exact Nat.not_prime_of_dvd_of_ne this hxneq1 hxneqa
next ha1 x hxa hmod ih=>
unfold isPrime.helper
simp[hxa,hmod]
simp at ih
apply ih
omega
}
apply this
omega
}
def modInv(a: Nat) (p:Nat)(hp:p.Prime): Option Nat
:=
if a%p=0 then
none
else
let expn:Nat := p-2
some ( (a^expn) %p)
theorem modInv_correct(a:Nat) (p:Nat)(hp:p.Prime):
(∃ x:Nat, (a*x)%p=1)->(a*(modInv a p hp).get!)%p=1 :=by{
intro hexist
have han0: a%p ≠ 0:=by{
contrapose! hexist
intro x
have: (a*x)%p =(a%p *x)%p:=by{
simp[Nat.mod_mul_mod]
--exact Eq.symm (Nat.mod_mul_mod a x ↑p)
}
rw[hexist] at this
simp[this]
}
unfold modInv
simp[han0]
--simp[Option.get!]
have hp2:p>=2 :=by{
exact Nat.Prime.two_le hp
}
have hm:a*a^(p-2)=a^(p-1) :=by{
calc
a*a^(p-2)= a^1 *a^(p-2):=by {simp}
_=a^(1+(p-2)) :=by{exact Eq.symm (Nat.pow_add a 1 (p - 2))}
_=a^(p-1) :=by{
have: 1+(p-2)=p-1:=by omega
exact congrArg (HPow.hPow a) this
}
}
simp[hm]
--Fermat's little theorem
--from Mathlib.FieldTheory.Finite
have hcop: IsCoprime (a:Int) p :=by{
refine Nat.isCoprime_iff_coprime.mpr ?_
have: ¬ p ∣ a :=by{omega}
refine Nat.coprime_iff_isRelPrime.mpr ?_
have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this
exact
IsRelPrime.symm hrp
}
have:= Int.ModEq.pow_card_sub_one_eq_one hp hcop
have pz:((a:Int)^(p-1))%(p:Int)=1%(p:Int):=by{
exact this
}
--contrapose this
--intro hzmod
have h1mp: 1%(p:Int)=1 :=by{
refine Int.emod_eq_of_lt ?H1 ?H2
omega
omega
}
rw[h1mp] at pz
norm_cast at pz
}
theorem modInv_none(a:Nat) (p:Nat)(hp:p.Prime): (Not (∃ x, (a*x)%p=1))-> modInv a p hp=none
:=by
intro h
simp[modInv]
contrapose! h
refine Nat.exists_mul_emod_eq_one_of_coprime ?hkn ?hk
refine Nat.coprime_iff_isRelPrime.mpr ?_
have: ¬ p ∣ a :=by{omega}
have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this
exact IsRelPrime.symm hrp
exact Nat.Prime.one_lt hp
def minFacT(a:Nat) (h: a>1)
: {x:Nat//x>1∧ x ∣ a∧ Not (∃ y>1, y∣a ∧ y<x)}
:=
let lst:= List.range (a+1)
let res:=lst.find? (fun x=> x>1 ∧ x∣ a)
have : res.isSome :=by{
refine (@List.find?_isSome _ lst fun x => decide (x > 1 ∧ x ∣ a)).mpr ?_
use a
constructor
exact List.self_mem_range_succ a
simp[h]
}
let r:=res.get this
⟨r, by{
have hf:lst.find? (fun x=> x>1 ∧ x∣ a)=some r:=by{
exact Eq.symm (Option.some_get this)
}
have lem := @List.find?_range_eq_some (a+1) _ _|>.mp hf
simp at lem
constructor
simp[lem.left]
constructor
simp[lem.left]
have lr:=lem.right
rcases lr with ⟨ _,lr'⟩
intro hy
rcases hy with ⟨ y , hy'⟩
have:= lr' y hy'.2.2
rcases this <;> omega
}⟩
def minFac(a:Nat) (h: a>1):Nat
:= minFacT a h
theorem minFac_isfac(a:Nat)(h: a>1): ( (minFac a h) ∣ a) ∧ (minFac a h>1)
:=by
simp[minFac]
let r:=minFacT a h
simp[r.2]
theorem minFac_ismin(a:Nat)(h:a>1): Not (∃ y>1,( y ∣ a) ∧ y<minFac a h)
:=by
simp[minFac]
let r:=minFacT a h
have:=r.2.2.2
intro x h1 hdvd
simp at this
have:=this x h1 hdvd
simp[r,this]
def midPoint (x1 y1 x2 y2: Rat):Rat × Rat
:=((x1+x2)/2, (y1+y2)/2)
def distSq( x1 y1 x2 y2: Rat):Rat:=
(x1-x2)^2 + (y1-y2)^2
theorem midPoint_correct (x1 y1 x2 y2: Rat)
: let (xmid,ymid) :=midPoint x1 y1 x2 y2
distSq xmid ymid x1 y1=distSq xmid ymid x2 y2
∧ 4*(distSq xmid ymid x1 y1)=distSq x1 y1 x2 y2
:=by
simp[midPoint,distSq]
constructor <;> ring_nf
def GCD (x y: Nat): Nat :=
if y = 0 then
x
else
GCD y (x % y)
termination_by y
decreasing_by {
simp_wf
apply Nat.mod_lt _
refine Nat.zero_lt_of_ne_zero ?_
assumption
}
theorem gcd_is_div (x y: Nat):
(p: x > 0)→ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y) := match y with
| 0 => by {
simp[GCD]
}
| Nat.succ z =>by {
have hyp: z.succ>0 := by {
exact Nat.zero_lt_succ z
}
have ih := gcd_is_div z.succ (x % z.succ)
have ihh := ih hyp
have heq: GCD x z.succ = GCD z.succ (x%z.succ) :=by{
rw[GCD.eq_def]
tauto
}
intro hx
simp[heq, ihh]
rcases ihh.right with ⟨k, ihh' ⟩
have hq: x = (GCD z.succ (x%z.succ))*k +z.succ*(x/z.succ) :=by{
rw[← ihh']
exact Eq.symm (Nat.mod_add_div x z.succ)
}
rcases ihh.left with ⟨ m, ihhl'⟩
use (x/z.succ) * m + k
rw[Nat.mul_add]
rw[Nat.mul_comm, Nat.mul_assoc]
rw[Nat.mul_comm m]
rw[← ihhl']
rw[Nat.mul_comm]
rw[Nat.add_comm]
have hz: z+1 = z.succ :=by omega
rw[hz]
omega
}
termination_by y
decreasing_by {
simp_wf
apply Nat.mod_lt _
refine Nat.zero_lt_of_ne_zero ?_
tauto
}
theorem gcd_is_greatest (x y: Nat):
(x>0) → Not (∃ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y ) := match y with
| 0 => by {
have hgcd0: GCD x 0 = x :=by {
simp[GCD]
}
intro hx
intro hh
rcases hh with ⟨z0, hh' ⟩
have hzx: z0 ≤ x :=by{
have hzdx: z0∣ x:=by {tauto}
rcases hzdx with ⟨k, hzdx'⟩
have hk: k>0 :=by{
contrapose hx
have hk0: k=0 := by omega
have hx0: x=0:= by simp[hzdx', hk0]
omega
}
have hkg1: k>=1:=by{omega}
rw[hzdx']
have hz0: z0=z0*1:=by {omega}
nth_rewrite 1 [hz0]
exact Nat.mul_le_mul_left z0 hk
}
have: z0>GCD x 0:=by{tauto}
rw[hgcd0] at this
omega
}
| Nat.succ yy => by{
intro hx
intro hh
rcases hh with ⟨z0, hh' ⟩
have ih:=gcd_is_greatest yy.succ (x%yy.succ)
have hyg0: yy.succ>0 :=by{omega}
have ihh:= ih hyg0
have hgcd: GCD x yy.succ = GCD yy.succ (x%yy.succ) := by {
rw[GCD.eq_def]
tauto
}
contrapose! ihh
use z0
have hzg: z0> GCD yy.succ (x%yy.succ):= by {
omega
}
simp[hzg, hh']
have hzx: z0∣ x:=by tauto
rcases hzx with ⟨ k, hzx'⟩
have hzy: z0 ∣ yy.succ :=by tauto
rcases hzy with ⟨ m, hzy' ⟩
have hmod: x%yy.succ + yy.succ * (x/yy.succ) =x :=by{
exact Nat.mod_add_div x yy.succ
}
refine (Nat.dvd_mod_iff ?h.intro.intro.h).mpr ?h.intro.intro.a
tauto
tauto
}
termination_by y
decreasing_by {
simp_wf
apply Nat.mod_lt _
refine Nat.zero_lt_of_ne_zero ?_
tauto
}
def solveProg(t:Nat):Nat
:=
let rec loop (i:{i':Nat//¬ ∃ i'' < i',i''*(i''+1)>=t*2}) (acc:{a:Nat//a*2=i.val*(i.val+1)})
:{x:Nat//x*(x+1)>=t*2∧ ¬ ∃ y<x, y*(y+1)>=t*2}:=
have ih:=acc.2
have iih:=i.2
if h:acc>=t then
⟨i, by constructor;omega;exact iih⟩
else
have hi: Not (i.val*(i.val+1)>=t*2):=by{
rw[← ih]
simp[h]
}
have: ¬∃ i'' < i.val + 1, i'' * (i'' + 1) ≥ t * 2:=by{
simp
intro x hx
by_cases x < i.val
next hlt=> simp at iih; exact iih x hlt
next hlt=>
have : x=i:=by omega
rw[this]
simpa using hi
}
loop ⟨i.val+1,this⟩ ⟨acc.val+i.val+1, by ring_nf;rw[ih];ring⟩
termination_by t-acc
decreasing_by{
simp_wf
refine Nat.sub_lt_sub_left (by omega) (by omega)
}
loop ⟨ 0, by omega⟩ ⟨ 0, by simp⟩
theorem solveProg_isgeq(t:Nat): (solveProg t)*((solveProg t)+1) >= t*2
:=by
simp[solveProg]
have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2
omega
theorem solveProg_ismin(t:Nat): Not (∃ y< (solveProg t), y*(y+1)>=t*2)
:=by
simp[solveProg]
have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2
simp at ih
exact ih.right
def solveGeom(a t:Nat)(h:a>1):Nat
:=
let rec loop (h:a>1)(i:{i':Nat//¬ ∃i'' < i',a^(i''+1)-1>=t*(a-1)})(acc:{acc':Nat//a^(i.val+1)-1=acc'*(a-1)})
:{x:Nat//a^(x+1)-1>=t*(a-1)∧ ¬∃ y<x,a^(y+1)-1>=t*(a-1)}:=
have ih:=acc.2
have iih:=i.2
if hge:acc>=t then
⟨i, by rw [ih];constructor;exact Nat.mul_le_mul_right (a - 1) hge; exact iih⟩
else
let newacc:=acc+a^(i.val+1)
have : a^(i.val+2)-1=newacc *(a-1):=by{
ring_nf
rw[← ih]
ring_nf
have : 0< a * a ^ i.val :=by refine Nat.mul_pos (by omega) (by refine Nat.pow_pos (by omega))
rw[← Nat.add_sub_assoc (by omega) (a * a ^ i.val * (a - 1))]
ring_nf
have: a * a ^ i.val+a * a ^ i.val * (a - 1) =a * a ^ i.val*a:=by{
have lem:=Nat.mul_one (a * a ^ i.val)
nth_rewrite 1 [← lem]
rw[← Nat.mul_add (a*a^i.val) 1]
have: 1+(a-1)=a:=by omega
rw[this]
}
rw[this]
ring_nf
}
have hopt:¬∃ i'' < i.val + 1, a ^ (i'' + 1) - 1 ≥ t * (a - 1):=by{
simp
intro x xh
by_cases x < i.val
next hlt=> simp at iih; exact iih x hlt
next hlt=>
have hxi: x=i :=by omega
simp at hge
rw[hxi,ih]
refine Nat.mul_lt_mul_of_pos_right hge (by simp[h])
}
loop h ⟨i.val+1, hopt⟩ ⟨newacc,this ⟩
termination_by t-acc
decreasing_by{
simp_wf
refine Nat.sub_lt_sub_left (by omega) ?_
have: a^(i.val+1)>0 :=by{
refine Nat.pow_pos (by omega)
}
omega
}
loop h ⟨0, by simp⟩ ⟨1, by ring_nf⟩
theorem solveGeom_isgeq(a t:Nat)(h:a>1): a^((solveGeom a t h)+1)-1 >=t*(a-1)
:=by
simp[solveGeom]
have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2
simp[this]
theorem solveGeom_ismin(a t:Nat)(h:a>1): Not (∃ y<solveGeom a t h, a^(y+1)-1>= t*(a-1))
:=by
simp[solveGeom]
have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2.2
simp at this
exact this
def solveSquare(t:Nat): Nat
:=
let rec loop (i:{i':Nat//¬ ∃ i'' < i', i''*i''>=t})
:{x:Nat//x*x>=t∧ ¬ ∃ y<x, y*y>=t} :=
have iih:=i.2
if hcomp: i*i>=t then
⟨ i, by simp[hcomp];simp at iih;exact iih⟩
else
loop ⟨i+1,
by{
simp
intro x hx
by_cases x < i.val
next hlt=> simp at iih; exact iih x hlt
next hlt=>
have hxi: x=i.val :=by omega
rw[hxi]
omega
}⟩
termination_by t-i*i
decreasing_by{
simp_wf
refine Nat.sub_lt_sub_left (by omega) (by ring_nf;omega)
}
loop ⟨0, by simp⟩
theorem solveSquare_isgeq(t:Nat): (solveSquare t)*(solveSquare t)>=t
:=by
simp[solveSquare]
have:=(solveSquare.loop t ⟨0, by simp⟩).2
simp[this]
theorem solveSquare_ismin(t:Nat): Not (∃ y< (solveSquare t), y*y>=t)
:=by
simp[solveSquare]
have:=(solveSquare.loop t ⟨0, by simp⟩).2.2
simp at this
exact this
def f[Monad m] (op: Nat->Nat->(m Nat)) (n: Nat): (m Nat)
:=
match n with
| 0 => pure 1
| 1 => pure 1
| n + 2 =>
do
let x ← f op (n + 1)
let y ← f op n
op x y
theorem f_base (op : Nat → Nat → Id Nat) :
(f op 0 = pure 1) ∧ (f op 1 = pure 1)
:= by constructor <;> rfl
theorem f_recursive (op : Nat → Nat → Id Nat) (n : Nat) : f op (n+2) =do {op (← f op (n+1)) (← f op n) }
:= by rfl
def rev(xs: List Int): List Int
:= match xs with
|[] => []
|h::t => (rev t) ++ [h]
theorem reverse_correct(xs:List Int):
xs.length=(rev xs).length ∧
∀ i<xs.length, xs[i]! =(rev xs)[xs.length-1-i]!
:=by{
induction xs
next=>simp[rev]
next h t ih=>
constructor
· {
simp[rev,ih]
}
· {
simp[rev]
intro i
have hlen: (rev t).length=t.length:=by{
simp [ih.left]
}
cases i with
|zero=>
simp
have :t.length<(rev t ++[h]).length :=by{
exact List.get_of_append_proof rfl hlen
}
have hind:(rev t ++ [h])[t.length]! =(rev t ++ [h])[t.length] :=by{
exact getElem!_pos (rev t ++ [h]) t.length this
}
simp[hind]
exact Eq.symm (List.getElem_concat_length (rev t) h t.length (id (Eq.symm hlen)) this)
|succ i'=>
simp
have:= ih.right i'
intro hi'
simp[hi'] at this
have hlind:t.length-1-i'=t.length - (i' + 1) :=by{
omega
}
have hh: (rev t)[t.length - 1 - i']! =(rev t ++ [h])[t.length - (i' + 1)]! :=by{
simp[hlind]
have hlt:t.length - (i' + 1)<(rev t).length :=by{
simp[hlen]
omega
}
have hl':(rev t)[t.length - (i' + 1)]! =(rev t)[t.length - (i' + 1)] :=by{
exact getElem!_pos (rev t) (t.length - (i' + 1)) hlt
}
have hrlen: (rev t ++ [h]).length>(rev t).length:=by {
exact
List.get_of_append_proof rfl rfl
}
have hrlt: t.length - (i' + 1)<(rev t ++ [h]).length :=by{
omega
}
have hr': (rev t ++ [h])[t.length - (i' + 1)]! =(rev t ++ [h])[t.length - (i' + 1)] :=by{
refine getElem!_pos (rev t ++[h]) (t.length - (i' + 1)) ?_
}
simp[hr',hl']
refine Eq.symm (List.getElem_append_left (as:= rev t) (bs:=[h]) ?_)
omega
}
omega
}
}
def maxProp(xs:List Int)(x:Int):=
x∈ xs ∧∀ y∈ xs, x≥ y
def findMaxA (xs: List Int): Option <| Subtype <| maxProp xs :=
match hm: xs.attach with
|[]=>none
|h::t=>
let rec helper (curr: {y//y∈ xs})(rest:List {y//y∈ xs})
:{y//y∈ xs ∧ ∀ y'∈ curr::rest, y'<=y}:=
match rest with
|[]=> ⟨curr, by simp[maxProp,curr.2]⟩
|rh::rt=>
let newmax:= if rh.val>curr.val then rh else curr
let r:=helper newmax rt
have ih:=r.2
have ihr:=ih.right
⟨ r, by {
simp[ih]
have:=ihr newmax (by simp)
have hgeq: newmax.val>=curr.val∧ newmax.val >=rh.val:=by{
simp[newmax]
split <;> constructor<;> try simp
next hsplit=> exact le_of_lt hsplit
next hsplit=>simp at hsplit; exact hsplit
}
constructor
omega
constructor
omega
intro a b hab
have:=ihr ⟨ a,b⟩ (by simp[hab])
simp[this]
}⟩
let res:=helper h t
have ih:=res.2
have ihr:=ih.right
some ⟨ res, by {
simp[maxProp,ih]
intro y yh
let yy:{x//x∈xs}:=⟨ y,yh⟩
have hin:yy∈ h::t :=by{
rw[← hm]
exact List.mem_attach xs yy
}
have:= ihr yy hin
simp[this]
}⟩
def findMax (xs : List Int) : Option Int
:= match xs with
|[]=>none
|h::t=> findMaxA (h::t)
theorem findMax_correct(x: Int) (xs : List Int):
∃ max∈ (x::xs),
And (findMax (x::xs) = some max) (∀ y ∈ (x::xs) , y ≤ max)
:=by
simp only[findMax,pure]
have hsome: findMaxA (x::xs)|>.isSome :=by exact rfl
match hm: findMaxA (x::xs) with
|none=>contradiction
|some y=>
use y
simp
have:=y.2
simp[maxProp] at this
exact this
theorem findMax_base : findMax [] = none
:=by
unfold findMax
simp only [findMaxA]
abbrev minSol(xs:List Int):=
{x:Int//x∈xs ∧ ∀ y∈ xs, y>=x}
def findMinTyped (xs : List Int)
: {r:Option (minSol xs) // r=none ↔ xs=[]}
:=match hm:xs with
|[]=> ⟨ none, by simp⟩
|h::t=>
let rest:=findMinTyped t
match hr: rest with
|⟨ none, hn⟩ =>
let sol:minSol (h::t) :=⟨ h, by simp[hm]; simp at hn; simp[hn] ⟩
⟨ some sol, by simp ⟩
|⟨some r,_⟩ =>
let newmin:{y:Int//y∈ h::t∧ y≤ h ∧ y≤ r}:=if hcomp:h<r then ⟨h,by simp;omega⟩ else ⟨r,by simp[r.2];omega⟩
have ih:=r.2
let sol:minSol (h::t):=
⟨ newmin,
by constructor;exact newmin.2.left;simp[newmin.2];intro a ha;have:=ih.right a ha; omega
⟩
⟨ some sol, by simp⟩
def findMin (xs:List Int):Option Int
:=match xs with
|[]=>none
|h::t=>findMinTyped (h::t) |>.val
theorem findMin_correct(x: Int) (xs : List Int):
∃ min∈ (x::xs),
And (findMin (x::xs) = some min) (∀ y ∈ (x::xs) , y >= min)
:=by
simp only [findMin,pure]
--have hsome: findMinTyped (x::xs)|>.val.isSome :=by sorry
match hm: findMinTyped (x::xs) with
|⟨ none, hn⟩ =>simp at hn
|⟨ some y,_⟩ =>
use y
simp
have :=y.2
constructor;simpa using this.left;simpa using this.right
theorem findMin_base : findMin [] = none
:=by exact rfl
def isIn (x:Int) (xs: List Int):Bool
:= match xs with
|[] => false
|h::t => x==h || isIn x t
def isIn_correct (x:Int)(xs:List Int):
isIn x xs = true ↔ x∈ xs := by{
induction xs with
|nil=> simp[isIn]
|cons h t ih=> simp[isIn,ih]
}
def countEq (x:Int)(xs:List Int):Nat
:= match xs with
|[]=>0
|h::t =>
let c:= if h=x then 1 else 0
(countEq x t) + c
def countEq_correct (x:Int)(xs:List Int):
List.count x xs = countEq x xs
:=by{
induction xs with
|nil =>rfl
|cons h t ih=>
simp[countEq]
have lem:=List.count_cons x h t
rw[← ih]
rw[lem]
simp
}
def findIfT(xs:List Int)(p:Int->Bool)
:{oi:Option Int//
if (∃ x∈ xs, p x) then ∃ y∈ xs, oi=some y ∧ p y
else oi=none}
:=match xs with
|[]=>⟨ none, by exact rfl⟩
|h::t=>
if hp: (p h=true) then
⟨ some h, by simp[hp]⟩
else
let rest:=findIfT t p
⟨ rest, by simp[hp,rest.2]⟩
def findIf(xs:List Int)(p:Int->Bool):Option Int
:=findIfT xs p
theorem findIf_some(xs:List Int)(p:Int->Bool):
(∃ x∈ xs, p x) -> ∃ y∈ xs, findIf xs p=some y ∧ p y
:=by
simp only [findIf]
have:=(findIfT xs p).2
intro h
simp[h] at this
exact this
theorem findIf_none(xs:List Int)(p:Int->Bool):
(¬ ∃ y∈ xs, p y =true)-> findIf xs p=none
:=by
simp only [findIf]
have:=(findIfT xs p).2
intro h
simp[h] at this
exact this
def filterIf(xs:List Int)(p:Int->Bool):List Int
:=
match xs with
|[] => []
|h::t =>
if p h then
h::(filterIf t p)
else
filterIf t p
theorem filterIf_correct(xs:List Int)(p:Int->Bool):
filterIf xs p = List.filter p xs
:=by
induction xs with
|nil=> simp[filterIf]
|cons h t ih=>
simp[List.filter_cons]
simp[filterIf]
rw[ih]
def mapInt(xs:List Int)(f:Int->Int):List Int
:=match xs with
|[]=>[]
|h::t=> (f h) :: (mapInt t f)
theorem mapInt_correct(xs:List Int)(f:Int->Int)
: (mapInt xs f).length=xs.length
∧ ∀ i:Fin xs.length, (mapInt xs f)[i]! = f xs[i]
:=by
induction xs with
|nil=>simp[mapInt]
|cons h t ih=>
have hsize:(mapInt (h :: t) f).length = (h :: t).length :=by{
simp[mapInt,ih]
}
constructor
· exact hsize
· {
intro i
have hil:i<(mapInt (h :: t) f).length :=by{
simp[hsize]
}
have: (mapInt (h :: t) f)[i]! =(mapInt (h :: t) f)[i] :=by{
exact getElem!_pos (mapInt (h :: t) f) i hil
}
rw[this]
rcases i with ⟨i',hi⟩
cases i'
next=>
simp[mapInt]
next n=>
simp[mapInt]
have:=ih.right ⟨ n,by simp at hi;exact hi⟩
simp at this
rw[← this]
symm
exact getElem!_pos (mapInt t f) n (by simp at hi; omega)
}
def isPrefix (p xs:List α):=
List.take p.length xs = p
/- longest common prefix for a pair of lists-/
def lcpPair(xs ys:List Int )
:{zs:List Int//isPrefix zs xs∧ isPrefix zs ys
∧ (∀zz, isPrefix zz xs∧ isPrefix zz ys->zz.length<=zs.length)}
:=match xs,ys with
|[],_=>⟨ [],by simp[isPrefix]⟩
|_,[]=>⟨ [],by simp[isPrefix]⟩
|xh::xt, yh::yt=>
if heq: xh=yh then
let rest:=lcpPair xt yt
⟨ xh:: rest,
by{
have:=rest.2
constructor
· simpa[isPrefix,rest,heq] using this.1
· {
constructor
· simpa[isPrefix,rest,heq] using this.2.1
·{
intros zz hxy
cases zz
next=>
have: ([]:List Int).length=0:=by exact rfl
rw[this]
omega
next h t=>
simp[isPrefix] at hxy
have ih:=this.2.2
have ht:isPrefix t xt∧ isPrefix t yt:=by {
simp[isPrefix,hxy]
}
have ihh:=ih _ ht
simp[ihh]
}
}
}
⟩
else
⟨ [],
by {
simp[isPrefix]
intros zz hx hy
cases zz
next=>rfl
next h t=>
simp at hx
simp at hy
have : xh=yh :=by simp[hx,hy]
contradiction
}
⟩
|