import Mathlib def solveAdd (a b:Int): Int := b-a theorem solveAdd_correct (a b: Int): a + (solveAdd a b) =b := by simp[solveAdd] def solveAdd0(a:Int): Int := -a theorem solveAdd0_correct(a: Int): a +(solveAdd0 a)=0 := by simp[solveAdd0] def solveSub(a b:Int): Int := a-b theorem solveSub_correct(a b:Int): a - (solveSub a b)=b := by simp[solveSub] def solve1x1(a b: Rat): Option Rat := if a = 0 then if b=0 then some 0 else none else some (b/a) theorem solve1x1_correct(a b:Rat): (∃ x, a*x=b) -> a * (solve1x1 a b).get! =b := by intro hsol simp[solve1x1] split_ifs next hb=>simp[hb] next ha hb=> simp[ha] at hsol; rw[hsol] at hb; contradiction next ha=> simp simp[Rat.div_def] simp[Rat.mul_comm b] simp[← Rat.mul_assoc] have: a*a.inv=1 :=by{ have hainv: a⁻¹ = a.inv :=by { exact rfl } rw[← hainv] rw[Rat.mul_inv_cancel] assumption } simp[this] theorem solve1x1_none(a b:Rat): (Not (∃ x, a*x=b)) -> solve1x1 a b=none := by intro h simp[solve1x1] split_ifs next ha hb=> simp[ha] at h;rw[hb] at h; contradiction next=>rfl next ha=> contrapose! h use b/a exact mul_div_cancel₀ b ha def solveMul(a: Rat): Rat := if a=0 then 0 else 1/a theorem solveMul_correct(a:Rat): (∃ x, a*x=1)->a * (solveMul a)=1 := by intro h simp[solveMul] split next ha=> simp[ha] at h next ha=> exact Rat.mul_inv_cancel a ha theorem solveMul_nosol (a:Rat): (Not (∃ x, a*x=1)) ->solveMul a =0 := by intro h simp[solveMul] contrapose! h use 1/a exact mul_one_div_cancel h def solveDiv(a b:Rat) (ha: a≠ 0)(hb: b≠ 0): Rat := a/b theorem solveDiv_correct(a b:Rat)(ha:a≠ 0)(hb: b≠ 0): a / (solveDiv a b ha hb)= b := by simp[solveDiv] rw[← div_mul] rw[div_self (by simp[ha])] simp def isPrime(a: Nat): Bool := if a<=1 then false else let rec helper (cur: Nat):Bool:= if cur>=a then true else if a%cur=0 then false else helper (cur+1) termination_by a-cur decreasing_by{ simp_wf have hacur: a>cur:=by omega exact Nat.sub_succ_lt_self a cur hacur } helper 2 theorem isPrime_correct(a: Nat): (isPrime a) <-> Nat.Prime a := by{ constructor · { unfold isPrime split simp have: ∀ cur:Nat, cur>=2->(∀x:Nat, (x>=2 ∧ x< cur)-> a%x !=0) ->isPrime.helper a cur ->a.Prime:=by { intro cur intro hcur2 induction cur using isPrime.helper.induct exact a next ha1 c hcga => have hhelp: isPrime.helper a c =true:=by { unfold isPrime.helper simp[hcga] } simp[hhelp] contrapose! intro hnp apply Nat.exists_dvd_of_not_prime2 at hnp rcases hnp with ⟨ k, hnp'⟩ use k simp[hnp'] omega omega next ha c hca hmod => have hhelp: isPrime.helper a c=false:=by{ unfold isPrime.helper simp[hmod,hca] } simp[hhelp] next ha c hca hmod ih => unfold isPrime.helper split simp have: c>=a :=by assumption contradiction have: c+1>=2 :=by omega simp[ this] at ih simp intro hx apply ih intro x intro hx2 intro hxlt cases hc1x: c-x have: c=x :=by { omega } rw[← this] assumption have: x contrapose! unfold isPrime split simp have: a<=1 :=by assumption have ha2: a ≠ 2 :=by omega have ha3: a≠ 3 :=by omega intro hp have h5p: 5<=a :=by { exact Nat.Prime.five_le_of_ne_two_of_ne_three hp ha2 ha3 --Prime.five_le_of_ne_two_of_ne_three a hp ha2 ha3 } omega have: ∀cur: Nat, cur>=2 ->isPrime.helper a cur ≠ true ->¬ a.Prime :=by{ intro cur intro hcur2 induction cur using isPrime.helper.induct exact a next ha1 x hxa=> unfold isPrime.helper simp[hxa] next ha1 x hxa hmod => unfold isPrime.helper simp[hxa,hmod] have :x ∣ a :=by omega have hxneqa: x≠ a :=by omega have hxneq1: x≠ 1 :=by omega exact Nat.not_prime_of_dvd_of_ne this hxneq1 hxneqa next ha1 x hxa hmod ih=> unfold isPrime.helper simp[hxa,hmod] simp at ih apply ih omega } apply this omega } def modInv(a: Nat) (p:Nat)(hp:p.Prime): Option Nat := if a%p=0 then none else let expn:Nat := p-2 some ( (a^expn) %p) theorem modInv_correct(a:Nat) (p:Nat)(hp:p.Prime): (∃ x:Nat, (a*x)%p=1)->(a*(modInv a p hp).get!)%p=1 :=by{ intro hexist have han0: a%p ≠ 0:=by{ contrapose! hexist intro x have: (a*x)%p =(a%p *x)%p:=by{ simp[Nat.mod_mul_mod] --exact Eq.symm (Nat.mod_mul_mod a x ↑p) } rw[hexist] at this simp[this] } unfold modInv simp[han0] --simp[Option.get!] have hp2:p>=2 :=by{ exact Nat.Prime.two_le hp } have hm:a*a^(p-2)=a^(p-1) :=by{ calc a*a^(p-2)= a^1 *a^(p-2):=by {simp} _=a^(1+(p-2)) :=by{exact Eq.symm (Nat.pow_add a 1 (p - 2))} _=a^(p-1) :=by{ have: 1+(p-2)=p-1:=by omega exact congrArg (HPow.hPow a) this } } simp[hm] --Fermat's little theorem --from Mathlib.FieldTheory.Finite have hcop: IsCoprime (a:Int) p :=by{ refine Nat.isCoprime_iff_coprime.mpr ?_ have: ¬ p ∣ a :=by{omega} refine Nat.coprime_iff_isRelPrime.mpr ?_ have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this exact IsRelPrime.symm hrp } have:= Int.ModEq.pow_card_sub_one_eq_one hp hcop have pz:((a:Int)^(p-1))%(p:Int)=1%(p:Int):=by{ exact this } --contrapose this --intro hzmod have h1mp: 1%(p:Int)=1 :=by{ refine Int.emod_eq_of_lt ?H1 ?H2 omega omega } rw[h1mp] at pz norm_cast at pz } theorem modInv_none(a:Nat) (p:Nat)(hp:p.Prime): (Not (∃ x, (a*x)%p=1))-> modInv a p hp=none :=by intro h simp[modInv] contrapose! h refine Nat.exists_mul_emod_eq_one_of_coprime ?hkn ?hk refine Nat.coprime_iff_isRelPrime.mpr ?_ have: ¬ p ∣ a :=by{omega} have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this exact IsRelPrime.symm hrp exact Nat.Prime.one_lt hp def minFacT(a:Nat) (h: a>1) : {x:Nat//x>1∧ x ∣ a∧ Not (∃ y>1, y∣a ∧ y x>1 ∧ x∣ a) have : res.isSome :=by{ refine (@List.find?_isSome _ lst fun x => decide (x > 1 ∧ x ∣ a)).mpr ?_ use a constructor exact List.self_mem_range_succ a simp[h] } let r:=res.get this ⟨r, by{ have hf:lst.find? (fun x=> x>1 ∧ x∣ a)=some r:=by{ exact Eq.symm (Option.some_get this) } have lem := @List.find?_range_eq_some (a+1) _ _|>.mp hf simp at lem constructor simp[lem.left] constructor simp[lem.left] have lr:=lem.right rcases lr with ⟨ _,lr'⟩ intro hy rcases hy with ⟨ y , hy'⟩ have:= lr' y hy'.2.2 rcases this <;> omega }⟩ def minFac(a:Nat) (h: a>1):Nat := minFacT a h theorem minFac_isfac(a:Nat)(h: a>1): ( (minFac a h) ∣ a) ∧ (minFac a h>1) :=by simp[minFac] let r:=minFacT a h simp[r.2] theorem minFac_ismin(a:Nat)(h:a>1): Not (∃ y>1,( y ∣ a) ∧ y ring_nf def GCD (x y: Nat): Nat := if y = 0 then x else GCD y (x % y) termination_by y decreasing_by { simp_wf apply Nat.mod_lt _ refine Nat.zero_lt_of_ne_zero ?_ assumption } theorem gcd_is_div (x y: Nat): (p: x > 0)→ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y) := match y with | 0 => by { simp[GCD] } | Nat.succ z =>by { have hyp: z.succ>0 := by { exact Nat.zero_lt_succ z } have ih := gcd_is_div z.succ (x % z.succ) have ihh := ih hyp have heq: GCD x z.succ = GCD z.succ (x%z.succ) :=by{ rw[GCD.eq_def] tauto } intro hx simp[heq, ihh] rcases ihh.right with ⟨k, ihh' ⟩ have hq: x = (GCD z.succ (x%z.succ))*k +z.succ*(x/z.succ) :=by{ rw[← ihh'] exact Eq.symm (Nat.mod_add_div x z.succ) } rcases ihh.left with ⟨ m, ihhl'⟩ use (x/z.succ) * m + k rw[Nat.mul_add] rw[Nat.mul_comm, Nat.mul_assoc] rw[Nat.mul_comm m] rw[← ihhl'] rw[Nat.mul_comm] rw[Nat.add_comm] have hz: z+1 = z.succ :=by omega rw[hz] omega } termination_by y decreasing_by { simp_wf apply Nat.mod_lt _ refine Nat.zero_lt_of_ne_zero ?_ tauto } theorem gcd_is_greatest (x y: Nat): (x>0) → Not (∃ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y ) := match y with | 0 => by { have hgcd0: GCD x 0 = x :=by { simp[GCD] } intro hx intro hh rcases hh with ⟨z0, hh' ⟩ have hzx: z0 ≤ x :=by{ have hzdx: z0∣ x:=by {tauto} rcases hzdx with ⟨k, hzdx'⟩ have hk: k>0 :=by{ contrapose hx have hk0: k=0 := by omega have hx0: x=0:= by simp[hzdx', hk0] omega } have hkg1: k>=1:=by{omega} rw[hzdx'] have hz0: z0=z0*1:=by {omega} nth_rewrite 1 [hz0] exact Nat.mul_le_mul_left z0 hk } have: z0>GCD x 0:=by{tauto} rw[hgcd0] at this omega } | Nat.succ yy => by{ intro hx intro hh rcases hh with ⟨z0, hh' ⟩ have ih:=gcd_is_greatest yy.succ (x%yy.succ) have hyg0: yy.succ>0 :=by{omega} have ihh:= ih hyg0 have hgcd: GCD x yy.succ = GCD yy.succ (x%yy.succ) := by { rw[GCD.eq_def] tauto } contrapose! ihh use z0 have hzg: z0> GCD yy.succ (x%yy.succ):= by { omega } simp[hzg, hh'] have hzx: z0∣ x:=by tauto rcases hzx with ⟨ k, hzx'⟩ have hzy: z0 ∣ yy.succ :=by tauto rcases hzy with ⟨ m, hzy' ⟩ have hmod: x%yy.succ + yy.succ * (x/yy.succ) =x :=by{ exact Nat.mod_add_div x yy.succ } refine (Nat.dvd_mod_iff ?h.intro.intro.h).mpr ?h.intro.intro.a tauto tauto } termination_by y decreasing_by { simp_wf apply Nat.mod_lt _ refine Nat.zero_lt_of_ne_zero ?_ tauto } def solveProg(t:Nat):Nat := let rec loop (i:{i':Nat//¬ ∃ i'' < i',i''*(i''+1)>=t*2}) (acc:{a:Nat//a*2=i.val*(i.val+1)}) :{x:Nat//x*(x+1)>=t*2∧ ¬ ∃ y=t*2}:= have ih:=acc.2 have iih:=i.2 if h:acc>=t then ⟨i, by constructor;omega;exact iih⟩ else have hi: Not (i.val*(i.val+1)>=t*2):=by{ rw[← ih] simp[h] } have: ¬∃ i'' < i.val + 1, i'' * (i'' + 1) ≥ t * 2:=by{ simp intro x hx by_cases x < i.val next hlt=> simp at iih; exact iih x hlt next hlt=> have : x=i:=by omega rw[this] simpa using hi } loop ⟨i.val+1,this⟩ ⟨acc.val+i.val+1, by ring_nf;rw[ih];ring⟩ termination_by t-acc decreasing_by{ simp_wf refine Nat.sub_lt_sub_left (by omega) (by omega) } loop ⟨ 0, by omega⟩ ⟨ 0, by simp⟩ theorem solveProg_isgeq(t:Nat): (solveProg t)*((solveProg t)+1) >= t*2 :=by simp[solveProg] have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2 omega theorem solveProg_ismin(t:Nat): Not (∃ y< (solveProg t), y*(y+1)>=t*2) :=by simp[solveProg] have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2 simp at ih exact ih.right def solveGeom(a t:Nat)(h:a>1):Nat := let rec loop (h:a>1)(i:{i':Nat//¬ ∃i'' < i',a^(i''+1)-1>=t*(a-1)})(acc:{acc':Nat//a^(i.val+1)-1=acc'*(a-1)}) :{x:Nat//a^(x+1)-1>=t*(a-1)∧ ¬∃ y=t*(a-1)}:= have ih:=acc.2 have iih:=i.2 if hge:acc>=t then ⟨i, by rw [ih];constructor;exact Nat.mul_le_mul_right (a - 1) hge; exact iih⟩ else let newacc:=acc+a^(i.val+1) have : a^(i.val+2)-1=newacc *(a-1):=by{ ring_nf rw[← ih] ring_nf have : 0< a * a ^ i.val :=by refine Nat.mul_pos (by omega) (by refine Nat.pow_pos (by omega)) rw[← Nat.add_sub_assoc (by omega) (a * a ^ i.val * (a - 1))] ring_nf have: a * a ^ i.val+a * a ^ i.val * (a - 1) =a * a ^ i.val*a:=by{ have lem:=Nat.mul_one (a * a ^ i.val) nth_rewrite 1 [← lem] rw[← Nat.mul_add (a*a^i.val) 1] have: 1+(a-1)=a:=by omega rw[this] } rw[this] ring_nf } have hopt:¬∃ i'' < i.val + 1, a ^ (i'' + 1) - 1 ≥ t * (a - 1):=by{ simp intro x xh by_cases x < i.val next hlt=> simp at iih; exact iih x hlt next hlt=> have hxi: x=i :=by omega simp at hge rw[hxi,ih] refine Nat.mul_lt_mul_of_pos_right hge (by simp[h]) } loop h ⟨i.val+1, hopt⟩ ⟨newacc,this ⟩ termination_by t-acc decreasing_by{ simp_wf refine Nat.sub_lt_sub_left (by omega) ?_ have: a^(i.val+1)>0 :=by{ refine Nat.pow_pos (by omega) } omega } loop h ⟨0, by simp⟩ ⟨1, by ring_nf⟩ theorem solveGeom_isgeq(a t:Nat)(h:a>1): a^((solveGeom a t h)+1)-1 >=t*(a-1) :=by simp[solveGeom] have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2 simp[this] theorem solveGeom_ismin(a t:Nat)(h:a>1): Not (∃ y= t*(a-1)) :=by simp[solveGeom] have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2.2 simp at this exact this def solveSquare(t:Nat): Nat := let rec loop (i:{i':Nat//¬ ∃ i'' < i', i''*i''>=t}) :{x:Nat//x*x>=t∧ ¬ ∃ y=t} := have iih:=i.2 if hcomp: i*i>=t then ⟨ i, by simp[hcomp];simp at iih;exact iih⟩ else loop ⟨i+1, by{ simp intro x hx by_cases x < i.val next hlt=> simp at iih; exact iih x hlt next hlt=> have hxi: x=i.val :=by omega rw[hxi] omega }⟩ termination_by t-i*i decreasing_by{ simp_wf refine Nat.sub_lt_sub_left (by omega) (by ring_nf;omega) } loop ⟨0, by simp⟩ theorem solveSquare_isgeq(t:Nat): (solveSquare t)*(solveSquare t)>=t :=by simp[solveSquare] have:=(solveSquare.loop t ⟨0, by simp⟩).2 simp[this] theorem solveSquare_ismin(t:Nat): Not (∃ y< (solveSquare t), y*y>=t) :=by simp[solveSquare] have:=(solveSquare.loop t ⟨0, by simp⟩).2.2 simp at this exact this def f[Monad m] (op: Nat->Nat->(m Nat)) (n: Nat): (m Nat) := match n with | 0 => pure 1 | 1 => pure 1 | n + 2 => do let x ← f op (n + 1) let y ← f op n op x y theorem f_base (op : Nat → Nat → Id Nat) : (f op 0 = pure 1) ∧ (f op 1 = pure 1) := by constructor <;> rfl theorem f_recursive (op : Nat → Nat → Id Nat) (n : Nat) : f op (n+2) =do {op (← f op (n+1)) (← f op n) } := by rfl def rev(xs: List Int): List Int := match xs with |[] => [] |h::t => (rev t) ++ [h] theorem reverse_correct(xs:List Int): xs.length=(rev xs).length ∧ ∀ isimp[rev] next h t ih=> constructor · { simp[rev,ih] } · { simp[rev] intro i have hlen: (rev t).length=t.length:=by{ simp [ih.left] } cases i with |zero=> simp have :t.length<(rev t ++[h]).length :=by{ exact List.get_of_append_proof rfl hlen } have hind:(rev t ++ [h])[t.length]! =(rev t ++ [h])[t.length] :=by{ exact getElem!_pos (rev t ++ [h]) t.length this } simp[hind] exact Eq.symm (List.getElem_concat_length (rev t) h t.length (id (Eq.symm hlen)) this) |succ i'=> simp have:= ih.right i' intro hi' simp[hi'] at this have hlind:t.length-1-i'=t.length - (i' + 1) :=by{ omega } have hh: (rev t)[t.length - 1 - i']! =(rev t ++ [h])[t.length - (i' + 1)]! :=by{ simp[hlind] have hlt:t.length - (i' + 1)<(rev t).length :=by{ simp[hlen] omega } have hl':(rev t)[t.length - (i' + 1)]! =(rev t)[t.length - (i' + 1)] :=by{ exact getElem!_pos (rev t) (t.length - (i' + 1)) hlt } have hrlen: (rev t ++ [h]).length>(rev t).length:=by { exact List.get_of_append_proof rfl rfl } have hrlt: t.length - (i' + 1)<(rev t ++ [h]).length :=by{ omega } have hr': (rev t ++ [h])[t.length - (i' + 1)]! =(rev t ++ [h])[t.length - (i' + 1)] :=by{ refine getElem!_pos (rev t ++[h]) (t.length - (i' + 1)) ?_ } simp[hr',hl'] refine Eq.symm (List.getElem_append_left (as:= rev t) (bs:=[h]) ?_) omega } omega } } def maxProp(xs:List Int)(x:Int):= x∈ xs ∧∀ y∈ xs, x≥ y def findMaxA (xs: List Int): Option <| Subtype <| maxProp xs := match hm: xs.attach with |[]=>none |h::t=> let rec helper (curr: {y//y∈ xs})(rest:List {y//y∈ xs}) :{y//y∈ xs ∧ ∀ y'∈ curr::rest, y'<=y}:= match rest with |[]=> ⟨curr, by simp[maxProp,curr.2]⟩ |rh::rt=> let newmax:= if rh.val>curr.val then rh else curr let r:=helper newmax rt have ih:=r.2 have ihr:=ih.right ⟨ r, by { simp[ih] have:=ihr newmax (by simp) have hgeq: newmax.val>=curr.val∧ newmax.val >=rh.val:=by{ simp[newmax] split <;> constructor<;> try simp next hsplit=> exact le_of_lt hsplit next hsplit=>simp at hsplit; exact hsplit } constructor omega constructor omega intro a b hab have:=ihr ⟨ a,b⟩ (by simp[hab]) simp[this] }⟩ let res:=helper h t have ih:=res.2 have ihr:=ih.right some ⟨ res, by { simp[maxProp,ih] intro y yh let yy:{x//x∈xs}:=⟨ y,yh⟩ have hin:yy∈ h::t :=by{ rw[← hm] exact List.mem_attach xs yy } have:= ihr yy hin simp[this] }⟩ def findMax (xs : List Int) : Option Int := match xs with |[]=>none |h::t=> findMaxA (h::t) theorem findMax_correct(x: Int) (xs : List Int): ∃ max∈ (x::xs), And (findMax (x::xs) = some max) (∀ y ∈ (x::xs) , y ≤ max) :=by simp only[findMax,pure] have hsome: findMaxA (x::xs)|>.isSome :=by exact rfl match hm: findMaxA (x::xs) with |none=>contradiction |some y=> use y simp have:=y.2 simp[maxProp] at this exact this theorem findMax_base : findMax [] = none :=by unfold findMax simp only [findMaxA] abbrev minSol(xs:List Int):= {x:Int//x∈xs ∧ ∀ y∈ xs, y>=x} def findMinTyped (xs : List Int) : {r:Option (minSol xs) // r=none ↔ xs=[]} :=match hm:xs with |[]=> ⟨ none, by simp⟩ |h::t=> let rest:=findMinTyped t match hr: rest with |⟨ none, hn⟩ => let sol:minSol (h::t) :=⟨ h, by simp[hm]; simp at hn; simp[hn] ⟩ ⟨ some sol, by simp ⟩ |⟨some r,_⟩ => let newmin:{y:Int//y∈ h::t∧ y≤ h ∧ y≤ r}:=if hcomp:hnone |h::t=>findMinTyped (h::t) |>.val theorem findMin_correct(x: Int) (xs : List Int): ∃ min∈ (x::xs), And (findMin (x::xs) = some min) (∀ y ∈ (x::xs) , y >= min) :=by simp only [findMin,pure] --have hsome: findMinTyped (x::xs)|>.val.isSome :=by sorry match hm: findMinTyped (x::xs) with |⟨ none, hn⟩ =>simp at hn |⟨ some y,_⟩ => use y simp have :=y.2 constructor;simpa using this.left;simpa using this.right theorem findMin_base : findMin [] = none :=by exact rfl def isIn (x:Int) (xs: List Int):Bool := match xs with |[] => false |h::t => x==h || isIn x t def isIn_correct (x:Int)(xs:List Int): isIn x xs = true ↔ x∈ xs := by{ induction xs with |nil=> simp[isIn] |cons h t ih=> simp[isIn,ih] } def countEq (x:Int)(xs:List Int):Nat := match xs with |[]=>0 |h::t => let c:= if h=x then 1 else 0 (countEq x t) + c def countEq_correct (x:Int)(xs:List Int): List.count x xs = countEq x xs :=by{ induction xs with |nil =>rfl |cons h t ih=> simp[countEq] have lem:=List.count_cons x h t rw[← ih] rw[lem] simp } def findIfT(xs:List Int)(p:Int->Bool) :{oi:Option Int// if (∃ x∈ xs, p x) then ∃ y∈ xs, oi=some y ∧ p y else oi=none} :=match xs with |[]=>⟨ none, by exact rfl⟩ |h::t=> if hp: (p h=true) then ⟨ some h, by simp[hp]⟩ else let rest:=findIfT t p ⟨ rest, by simp[hp,rest.2]⟩ def findIf(xs:List Int)(p:Int->Bool):Option Int :=findIfT xs p theorem findIf_some(xs:List Int)(p:Int->Bool): (∃ x∈ xs, p x) -> ∃ y∈ xs, findIf xs p=some y ∧ p y :=by simp only [findIf] have:=(findIfT xs p).2 intro h simp[h] at this exact this theorem findIf_none(xs:List Int)(p:Int->Bool): (¬ ∃ y∈ xs, p y =true)-> findIf xs p=none :=by simp only [findIf] have:=(findIfT xs p).2 intro h simp[h] at this exact this def filterIf(xs:List Int)(p:Int->Bool):List Int := match xs with |[] => [] |h::t => if p h then h::(filterIf t p) else filterIf t p theorem filterIf_correct(xs:List Int)(p:Int->Bool): filterIf xs p = List.filter p xs :=by induction xs with |nil=> simp[filterIf] |cons h t ih=> simp[List.filter_cons] simp[filterIf] rw[ih] def mapInt(xs:List Int)(f:Int->Int):List Int :=match xs with |[]=>[] |h::t=> (f h) :: (mapInt t f) theorem mapInt_correct(xs:List Int)(f:Int->Int) : (mapInt xs f).length=xs.length ∧ ∀ i:Fin xs.length, (mapInt xs f)[i]! = f xs[i] :=by induction xs with |nil=>simp[mapInt] |cons h t ih=> have hsize:(mapInt (h :: t) f).length = (h :: t).length :=by{ simp[mapInt,ih] } constructor · exact hsize · { intro i have hil:i<(mapInt (h :: t) f).length :=by{ simp[hsize] } have: (mapInt (h :: t) f)[i]! =(mapInt (h :: t) f)[i] :=by{ exact getElem!_pos (mapInt (h :: t) f) i hil } rw[this] rcases i with ⟨i',hi⟩ cases i' next=> simp[mapInt] next n=> simp[mapInt] have:=ih.right ⟨ n,by simp at hi;exact hi⟩ simp at this rw[← this] symm exact getElem!_pos (mapInt t f) n (by simp at hi; omega) } def isPrefix (p xs:List α):= List.take p.length xs = p /- longest common prefix for a pair of lists-/ def lcpPair(xs ys:List Int ) :{zs:List Int//isPrefix zs xs∧ isPrefix zs ys ∧ (∀zz, isPrefix zz xs∧ isPrefix zz ys->zz.length<=zs.length)} :=match xs,ys with |[],_=>⟨ [],by simp[isPrefix]⟩ |_,[]=>⟨ [],by simp[isPrefix]⟩ |xh::xt, yh::yt=> if heq: xh=yh then let rest:=lcpPair xt yt ⟨ xh:: rest, by{ have:=rest.2 constructor · simpa[isPrefix,rest,heq] using this.1 · { constructor · simpa[isPrefix,rest,heq] using this.2.1 ·{ intros zz hxy cases zz next=> have: ([]:List Int).length=0:=by exact rfl rw[this] omega next h t=> simp[isPrefix] at hxy have ih:=this.2.2 have ht:isPrefix t xt∧ isPrefix t yt:=by { simp[isPrefix,hxy] } have ihh:=ih _ ht simp[ihh] } } } ⟩ else ⟨ [], by { simp[isPrefix] intros zz hx hy cases zz next=>rfl next h t=> simp at hx simp at hy have : xh=yh :=by simp[hx,hy] contradiction } ⟩