File size: 9,827 Bytes
fd24748 1d4e294 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 1df77fd fa15ad2 1df77fd fd24748 1df77fd fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 fa15ad2 fd24748 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/647773a1168cb428e00e9a8f/N8lP93rB6lL3iqzML4SKZ.png' width=100px>
<h1 align="center"><b>On Path to Multimodal Generalist: General-Level and General-Bench</b></h1>
<p align="center">
<a href="https://generalist.top/">[π Project]</a>
<a href="https://generalist.top/leaderboard">[π Leaderboard]</a>
<a href="https://arxiv.org/abs/2505.04620">[π Paper]</a>
<a href="https://huggingface.co/papers/2505.04620">[π€ Paper-HF]</a>
<a href="https://huggingface.co/General-Level">[π€ Dataset-HF]</a>
<a href="https://github.com/path2generalist/GeneralBench">[π Dataset-Github]</a>
</p>
<h1 align="center" style="color: red">Scoped Close Set of General-Bench</h1>
</div>
---
This is the **`Scoped Close Set`**, with all the data exactly the same as in [π **`Close Set`**](https://huggingface.co/datasets/General-Level/General-Bench-Closeset).
We divided all the data into different scopes and blocks, each according to a certain specific leaderboard defined in [π `Leaderboard`](https://generalist.top/leaderboard).
Please download the dataset accordingly.
<div align="center">
<img src='https://cdn-uploads.huggingface.co/production/uploads/647773a1168cb428e00e9a8f/45qLaD5YXvWtFJKl0cB3A.png' width=1000px>
</div>
---
## π Table of Contents
- [β¨ Scope-A](#scope_a)
- [π Scope-B](#scope_b)
- [πΌοΈ Scope-C](#scope_c)
- [π½οΈ Scope-D](#scope_d)
---
<span id='scope_a'/>
# β¨β¨β¨ **Scope-A**
Full-spectrum leaderboard covering all modalities and tasks under General-Level, for highly capable, general-purpose multimodal models.
- π Details:
- βοΈ Covers all General-Level tasks and modalities.
- βοΈ Most challenging track; requires high model capacity and resource commitment.
- π Highlights:
- βοΈ Evaluates holistic generalization and cross-modal synergy.
- βοΈ Suitable for near-AGI or foundation-level multimodal generalists.
In **Scope-A**, we additionally provide a quick version of the dataset to enable fast and comprehensive evaluation of model capabilities.
You can find this simplified dataset in the [S-A-Quick](https://huggingface.co/datasets/General-Level/General-Bench-Closeset-Scoped/tree/main/Scope-A/S-A-Quick) folder.
`Note`: We only provide the annotated metadata (e.g., JSON files) in this folder. The corresponding `image/video/audio/3D` data can still be accessed from the [π **`Close Set`**](https://huggingface.co/datasets/General-Level/General-Bench-Closeset) repository.
The file structure of [S-A-Quick](https://huggingface.co/datasets/General-Level/General-Bench-Closeset-Scoped/tree/main/Scope-A/S-A-Quick) is shown as follows:
```
.
|-- 3D
| |-- comprehension
| |-- comprehension
| | |-- 3d_classification
| | |-- ...
| | `-- 3d_part_segmentation
| `-- generation
|-- audio
| |-- comprehension
| |-- comprehension
| | |-- AccentClassification
| | | `-- annotation.json
| | |-- AccentSexClassification
| | | `-- annotation.json
| | |-- ...
| | `-- WildAudioCaptioning
| `-- generation
| |-- AudioEdit
| | `-- annotation.json
| |-- ChordBasedMusicStyleTransfer
| |-- DailyTalkGeneration
| |-- VideoToAudio
| `-- VoiceConversion
|-- image
| |-- comprehension
| `-- generation
|-- nlp
| |-- Abstract-Meaning-Representation
| | `-- annotation.json
| |-- Abstractive-Summarization
| | `-- annotation.json
| |-- Time-Series
| |-- ...
| |-- Trivia-Question-Answering
| |-- Truthful-Question-Answering
| `-- Tweet-Question-Answering
`-- video
|-- comprehension
`-- generation
```
An illustrative example of annotation JSON formats:

---
<span id='scope_b'/>
# πππ Scope-B
Modality-specific leaderboards focusing on single modality or partially joint modality (e.g., image, video, audio, 3D) for modality-wise generalists.
- π Details:
- βοΈ 7 separate leaderboards (4 single modality + 3 combined modality).
- βοΈ Focuses on mastering diverse tasks within a single modality.
- π Highlights:
- βοΈ Measures within-modality generalization.
- βοΈ Suited for intermediate-level models with cross-task transferability.
In [Scope-B](https://huggingface.co/datasets/General-Level/General-Bench-Closeset-Scoped/tree/main/Scope-B), we provide the subset of data corresponding to each sub-leaderboard. Each task is represented by a separate JSON file, which specifies the dataset associated with that particular sub-leaderboard, including the relevant file names.
All referenced data files can be found in the [π **`Close Set`**](https://huggingface.co/datasets/General-Level/General-Bench-Closeset) repository.
```
{
## paradigm
"comprehension": {
## skill name
"Speech Accent Understanding":
[
{
## task nameοΌdata file name in Closeset
"Accent Classification": "AccentClassification"
},
{
"Accent Sex Classification": "AccentSexClassification"
},
{
"Speaker Identification": "SpeakerIdentification"
},
{
"Vocal Sound Classification": "VocalSoundClassification"
}
],
...
}
}
```
----
<span id='scope_c'/>
# πΌοΈπΌοΈπΌοΈ Scope-C
Leaderboards categorized by comprehension vs. generation tasks within each modality. Lower entry barrier for early-stage or lightweight models.
- π Details:
- βοΈ 8 leaderboards: 2 Γ 4 for multimodal comprehension/generation under different modalities.
- βοΈ Supports entry-level model evaluation or teams with limited resources.
- π Highlights:
- βοΈ Assesses task-type specialization: understanding or generation.
- βοΈ Reflects generalization across task types.
In [Scope-C](https://huggingface.co/datasets/General-Level/General-Bench-Closeset-Scoped/tree/main/Scope-C), we provide the subset of data corresponding to each sub-leaderboard. Each task is represented by a separate JSON file, which specifies the dataset associated with that particular sub-leaderboard, including the relevant file names.
All referenced data files can be found in the [π **`Close Set`**](https://huggingface.co/datasets/General-Level/General-Bench-Closeset) repository.
```
{
## skill name
"3D Human-related Object Classification": [
{
## task nameοΌdata file name in Closeset
"3D Accessory Classification": "3d_classification/ModelNet40/accessory"
},
{
"3D Appliance Classification": "3d_classification/ModelNet40/appliance"
},
{
"3D Tableware Classification": "3d_classification/ModelNet40/tableware"
},
{
"3D Musical Instrument Classification": "3d_classification/ModelNet40/musical_instrument"
},
{
"3D Person Classification": "3d_classification/ModelNet40/person"
}
],
...
}
```
----
<span id='scope_d'/>
# π½οΈπ½οΈπ½οΈ Scope-D
Fine-grained leaderboards focused on specific task clusters (e.g., VQA, Captioning, Speech Recognition), ideal for partial generalists.
- π Details:
- βοΈ Large number of sub-leaderboards, each scoped to a skill set.
- βοΈ Easiest to participate; lowest cost.
- π Highlights:
- βοΈ Evaluates fine-grained skill performance.
- βοΈ Helps identify model strengths and specialization areas.
- βοΈ Encourages progressive development toward broader leaderboard participation.
In [Scope-D](https://huggingface.co/datasets/General-Level/General-Bench-Closeset-Scoped/tree/main/Scope-D), we provide subset datasets corresponding to each sub-leaderboard. Each task is represented by a JSON file named in the format:
`{modality name}ββ{comp/gen}_{clustered skill name}.json`.
Each JSON file specifies the dataset used for the corresponding sub-leaderboard task, including the list of relevant file names.
All referenced data files can be found in the [π **`Close Set`**](https://huggingface.co/datasets/General-Level/General-Bench-Closeset) repository.
```
{
## clusered skill name
"Classifcation": {
## skill name
"3D Human-related Object Classification": [
"3d_classification/ModelNet40/accessory", ## data file name in Closeset
"3d_classification/ModelNet40/appliance",
"3d_classification/ModelNet40/tableware",
"3d_classification/ModelNet40/musical_instrument",
"3d_classification/ModelNet40/person"
],
"3D Structure and Environment Classification": [
"3d_classification/ModelNet40/furniture",
"3d_classification/ModelNet40/structure"
],
"Transportation and Technology Object Classification": [
"3d_classification/ModelNet40/electronic",
"3d_classification/ModelNet40/vehicle"
]
}
}
```
---
# π©π©π© **Citation**
If you find this project useful to your research, please kindly cite our paper:
```
@articles{fei2025pathmultimodalgeneralistgenerallevel,
title={On Path to Multimodal Generalist: General-Level and General-Bench},
author={Hao Fei and Yuan Zhou and Juncheng Li and Xiangtai Li and Qingshan Xu and Bobo Li and Shengqiong Wu and Yaoting Wang and Junbao Zhou and Jiahao Meng and Qingyu Shi and Zhiyuan Zhou and Liangtao Shi and Minghe Gao and Daoan Zhang and Zhiqi Ge and Weiming Wu and Siliang Tang and Kaihang Pan and Yaobo Ye and Haobo Yuan and Tao Zhang and Tianjie Ju and Zixiang Meng and Shilin Xu and Liyu Jia and Wentao Hu and Meng Luo and Jiebo Luo and Tat-Seng Chua and Shuicheng Yan and Hanwang Zhang},
eprint={2505.04620},
archivePrefix={arXiv},
primaryClass={cs.CV}
url={https://arxiv.org/abs/2505.04620},
}
``` |