Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
File size: 5,527 Bytes
c384d07
 
 
 
e65be61
64339bb
 
 
 
 
 
 
 
 
5dc02d0
 
 
 
 
 
b931a63
18922c8
 
 
 
5dc02d0
18922c8
 
ac02003
 
 
 
 
 
 
64339bb
 
 
2d2b761
 
e65be61
2d2b761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbcc4b9
2d2b761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbcc4b9
 
341624c
2d2b761
bbcc4b9
 
 
 
64339bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
license: mit
size_categories:
- 1M<n<10M
tags:
- android
- malware
- cybersecurity
- concept-drift
- longitudinal
- security
- classification
- benchmark
configs:
  - config_name: Baseline
    data_files:
      - split: train
        path: Baseline/*/*_train.parquet
      - split: test
        path: Baseline/*/*_test.parquet

  # - config_name: var_thresh_0.0001
  #   data_files:
  #     - split: train
  #       path: var_thresh_0.0001/*/*_train.parquet
  
  #     - split: test
  #       path: var_thresh_0.0001/*/*_test.parquet
  - config_name: var_thresh_0.01
    data_files:
      - split: train
        path: var_thresh_0.01/*/*_train.parquet
      - split: test
        path: var_thresh_0.01/*/*_test.parquet

language:
- en
pretty_name: LAMDA
---

# LAMDA: A Longitudinal Android Malware Dataset for Drift Analysis

This dataset contains a longitudinal benchmark for Android malware detection designed to analyze and evaluate concept drift in machine learning models. It includes labeled and feature-engineered Android APK data from 2013 to 2025 (excluding 2015), with over 1 million samples collected from real-world sources.

## Dataset Details

### Dataset Description

- **Curated by:** IQSeC Lab, The University of Texas at El Paso
- **Shared by:** IQSeC Lab
- **Language(s):** Not applicable
- **License:** MIT

LAMDA is the largest and most temporally diverse Android malware dataset to date. It enables studies in concept drift, temporal generalization, family classification, and robust malware detection over time. Each sample includes static features (from `.data` files), metadata (VirusTotal detections, family name, timestamp), and binary labels.

The dataset was created using ~1M APKs from [AndroZoo](https://androzoo.uni.lu/), with additional metadata and labels derived via VirusTotal and AVClass2. Labels are assigned using a 4+ AV detection threshold to reduce noise.

### Dataset Sources

- **Repository:** https://huggingface.co/datasets/IQSeC-Lab/LAMDA
- **Project Website:** https://iqsec-lab.github.io/LAMDA/
- **Paper:** https://arxiv.org/abs/2505.18551

## Uses

### Direct Use

- Malware classification
- Family prediction
- Concept drift analysis
- Temporal generalization benchmarks
- SHAP-based feature attribution drift analysis
- Continual learning evaluation (e.g., class-IL, replay)

### Out-of-Scope Use

- Dynamic behavior analysis (no runtime traces)
- On-device malware detection (model integration not provided)

## Dataset Structure

Each year is stored in a subdirectory:

```
2013/
β”œβ”€β”€ 2013_train.parquet
β”œβ”€β”€ 2013_test.parquet
...
2025/
β”œβ”€β”€ 2025_train.parquet
β”œβ”€β”€ 2025_test.parquet
```


Each `.parquet` contains:

| Column        | Description                                         |
|---------------|-----------------------------------------------------|
| `label`       | 0 = benign, 1 = malware                             |
| `family`      | Malware family name (via AVClass2)                  |
| `vt_count`    | VirusTotal vendor detection count                   |
| `year_month`  | Timestamp in YYYY-MM format                         |
| `feat_0 ... feat_4560` | Static bag-of-words features (int8)        |
| `hash`        | Sample SHA256 hash (used as index)                  |

A `feature_mapping.csv` maps each `feat_i` to its original static token.

## Dataset Creation

### Curation Rationale

To enable longitudinal and realistic evaluation of ML-based malware detection systems that must remain effective in the face of temporal and adversarial drift.

### Source Data

APK samples were downloaded from AndroZoo and processed using static analysis to extract `.data` files. Metadata was merged from a curated CSV containing VirusTotal counts and family assignments via AVClass2.

#### Data Collection and Processing

- Extracted feature vectors from `.data` files (comma-separated tokens)
- Labeled malware if `vt_detection β‰₯ 4`
- Assigned families via AVClass2
- Feature vectors vectorized using bag-of-words (sparse)
- Feature selection via `VarianceThreshold=0.001` β†’ 4,561 features
- Train/test split (80/20) stratified by label, year-wise

#### Who are the source data producers?

Original APKs are from AndroZoo. Annotations and processing were conducted by IQSeC Lab at the University of Texas at El Paso.

### Annotations

#### Annotation Process

- Malware/benign labels based on AV vendor threshold (β‰₯4)
- Family labels from AVClass2
- All annotations generated using automated pipelines

#### Who are the annotators?

Researchers at IQSeC Lab via static tooling and AVClass2

#### Personal and Sensitive Information

No PII or private user data is included. APKs are anonymized binaries.

## Bias, Risks, and Limitations

- Biased toward highly detected malware (AV-centric labeling)
- No dynamic/runtime behavior
- Concept drift is dataset-driven, not simulation-based

### Recommendations

- Normalize class balance before training
- Use continual or time-aware validation schemes
- SHAP explanations should be anchored year-wise

## Citation

**BibTeX:**
```bibtex
@article{lamda,
  title     = {{LAMDA: A Longitudinal Android Malware Benchmark for Concept Drift Analysis}},
  author    = {Md Ahsanul Haque and Ismail Hossain and Md Mahmuduzzaman Kamol and Md Jahangir Alam and Suresh Kumar Amalapuram and Sajedul Talukder and Mohammad Saidur Rahman},
  year      = {2025},
  eprint    = {2505.18551},
  archivePrefix = {arXiv},
  primaryClass  = {cs.CR},
  url       = {https://arxiv.org/abs/2505.18551}
}