add metadata
Browse files- Multidialog.py +242 -0
- metadata/test_freq_metadata_0000.jsonl +0 -0
- metadata/test_rare_metadata_0000.jsonl +0 -0
- metadata/train_metadata_0000.jsonl +0 -0
- metadata/train_metadata_0001.jsonl +0 -0
- metadata/train_metadata_0002.jsonl +0 -0
- metadata/train_metadata_0003.jsonl +0 -0
- metadata/valid_freq_metadata_0000.jsonl +0 -0
- metadata/valid_rare_metadata_0000.jsonl +0 -0
Multidialog.py
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
import csv
|
| 16 |
+
import os
|
| 17 |
+
import json
|
| 18 |
+
import datasets
|
| 19 |
+
|
| 20 |
+
_CITATION = """\
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
_DESCRIPTION = """\
|
| 24 |
+
Multidialog is the first large-sccale multimodal (i.e. audio, visual, and text) dialogue corpus, consisting of approximately 400 hours of audio-visual conversation strems between 6 pairs of conversation partners.
|
| 25 |
+
|
| 26 |
+
It contina
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
_HOMEPAGE = "https://multidialog.github.io/"
|
| 30 |
+
|
| 31 |
+
_LICENSE = "Apache License 2.0"
|
| 32 |
+
|
| 33 |
+
_BASE_DATA_URL = "https://huggingface.co/datasets/IVLLab/MultiDialog/resolve/main/"
|
| 34 |
+
|
| 35 |
+
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "{subset}/{subset}_chunks_{archive_id:04}.tar.gz"
|
| 36 |
+
|
| 37 |
+
_META_URL = _BASE_DATA_URL + "metadata/{subset}_metadata_{archive_id:04}.jsonl"
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class MultidialogConfig(datasets.BuilderConfig):
|
| 44 |
+
"""BuilderConfig for Multidialog."""
|
| 45 |
+
|
| 46 |
+
def __init__(self, name, *args, **kwargs):
|
| 47 |
+
"""BuilderConfig for Multidialog
|
| 48 |
+
"""
|
| 49 |
+
super().__init__(name=name, *args, **kwargs)
|
| 50 |
+
self.subsets_to_download = (name,)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class Multidialog(datasets.GeneratorBasedBuilder):
|
| 54 |
+
"""
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
VERSION = datasets.Version("1.0.0")
|
| 58 |
+
|
| 59 |
+
BUILDER_CONFIGS = [MultidialogConfig(name=subset) for subset in ["train", "test_freq", "test_rare", "valid_freq", "valid_rare"]]
|
| 60 |
+
|
| 61 |
+
DEFAULT_WRITER_BATCH_SIZE = 128
|
| 62 |
+
|
| 63 |
+
def _info(self):
|
| 64 |
+
features = datasets.Features(
|
| 65 |
+
{
|
| 66 |
+
"file_name": datasets.Value("string"),
|
| 67 |
+
"conv_id": datasets.Value("string"),
|
| 68 |
+
"utterance_id": datasets.Value("float32"),
|
| 69 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
| 70 |
+
"from": datasets.Value("string"),
|
| 71 |
+
"value": datasets.Value("string"),
|
| 72 |
+
"emotion": datasets.Value("string"),
|
| 73 |
+
"original_full_path": datasets.Value("string"), # relative path to full audio in original data dirs
|
| 74 |
+
}
|
| 75 |
+
)
|
| 76 |
+
return datasets.DatasetInfo(
|
| 77 |
+
description=_DESCRIPTION,
|
| 78 |
+
features=features,
|
| 79 |
+
homepage=_HOMEPAGE,
|
| 80 |
+
license=_LICENSE,
|
| 81 |
+
citation=_CITATION,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def _read_n_archives(self, n_archives_path):
|
| 85 |
+
with open(n_archives_path, encoding="utf-8") as f:
|
| 86 |
+
return int(f.read().strip())
|
| 87 |
+
|
| 88 |
+
def _split_generators(self, dl_manager):
|
| 89 |
+
splits = ("train", "test_freq", "test_rare", "valid_freq", "valid_rare")
|
| 90 |
+
|
| 91 |
+
n_archives = {
|
| 92 |
+
"train" : [15, 4],
|
| 93 |
+
"test_freq": [1, 1],
|
| 94 |
+
"test_rare": [1, 1],
|
| 95 |
+
"valid_freq": [1, 1],
|
| 96 |
+
"valid_rare": [1, 1],
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
# 2. prepare sharded archives with audio files
|
| 100 |
+
audio_archives_urls = {
|
| 101 |
+
split: [
|
| 102 |
+
_AUDIO_ARCHIVE_URL.format(subset=split, archive_id=i)
|
| 103 |
+
for i in range(n_archives[split][0])
|
| 104 |
+
]
|
| 105 |
+
for split in splits
|
| 106 |
+
}
|
| 107 |
+
audio_archives_paths = dl_manager.download(audio_archives_urls)
|
| 108 |
+
# flatten archives paths from
|
| 109 |
+
# {"train": {"xs": [path1, path2,], "s": [path3], "m": [path5, path5]}, "dev": {"dev": [path6,...]}, "test": {"test": [...]}}
|
| 110 |
+
# to {"train": [path1, path2, path3, path4, path5], "dev": [path6, ...], "test": [...]}
|
| 111 |
+
audio_archives_paths = _flatten_nested_dict(audio_archives_paths)
|
| 112 |
+
local_audio_archives_paths = dl_manager.extract(audio_archives_paths) if not dl_manager.is_streaming \
|
| 113 |
+
else None
|
| 114 |
+
|
| 115 |
+
# 3. prepare sharded metadata csv files
|
| 116 |
+
meta_urls = {
|
| 117 |
+
split: [
|
| 118 |
+
_META_URL.format(subset=split, archiv_id=i)
|
| 119 |
+
for i in range(n_archives[split][1])
|
| 120 |
+
]
|
| 121 |
+
for split in splits
|
| 122 |
+
}
|
| 123 |
+
meta_paths = dl_manager.download_and_extract(meta_urls)
|
| 124 |
+
meta_paths = _flatten_nested_dict(meta_paths)
|
| 125 |
+
|
| 126 |
+
if self.config.name == "test_freq":
|
| 127 |
+
return [
|
| 128 |
+
datasets.SplitGenerator(
|
| 129 |
+
name=datasets.Split.TEST,
|
| 130 |
+
gen_kwargs={
|
| 131 |
+
"audio_archives_iterators": [
|
| 132 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_freq"]
|
| 133 |
+
],
|
| 134 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
| 135 |
+
"test_freq"] if local_audio_archives_paths else None,
|
| 136 |
+
"meta_paths": meta_paths["test_freq"]
|
| 137 |
+
},
|
| 138 |
+
),
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
if self.config.name == "test_rare":
|
| 142 |
+
return [
|
| 143 |
+
datasets.SplitGenerator(
|
| 144 |
+
name=datasets.Split.TEST,
|
| 145 |
+
gen_kwargs={
|
| 146 |
+
"audio_archives_iterators": [
|
| 147 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test_rare"]
|
| 148 |
+
],
|
| 149 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
| 150 |
+
"test_rare"] if local_audio_archives_paths else None,
|
| 151 |
+
"meta_paths": meta_paths["test_rare"]
|
| 152 |
+
},
|
| 153 |
+
),
|
| 154 |
+
]
|
| 155 |
+
|
| 156 |
+
if self.config.name == "valid_freq":
|
| 157 |
+
return [
|
| 158 |
+
datasets.SplitGenerator(
|
| 159 |
+
name=datasets.Split.VALIDATION,
|
| 160 |
+
gen_kwargs={
|
| 161 |
+
"audio_archives_iterators": [
|
| 162 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_freq"]
|
| 163 |
+
],
|
| 164 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
| 165 |
+
"valid_freq"] if local_audio_archives_paths else None,
|
| 166 |
+
"meta_paths": meta_paths["valid_freq"]
|
| 167 |
+
},
|
| 168 |
+
),
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
if self.config.name == "valid_rare":
|
| 172 |
+
return [
|
| 173 |
+
datasets.SplitGenerator(
|
| 174 |
+
name=datasets.Split.VALIDATION,
|
| 175 |
+
gen_kwargs={
|
| 176 |
+
"audio_archives_iterators": [
|
| 177 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["valid_rare"]
|
| 178 |
+
],
|
| 179 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
| 180 |
+
"valid_rare"] if local_audio_archives_paths else None,
|
| 181 |
+
"meta_paths": meta_paths["valid_rare"]
|
| 182 |
+
},
|
| 183 |
+
),
|
| 184 |
+
]
|
| 185 |
+
|
| 186 |
+
if self.config.name == "train":
|
| 187 |
+
return [
|
| 188 |
+
datasets.SplitGenerator(
|
| 189 |
+
name=datasets.Split.TRAIN,
|
| 190 |
+
gen_kwargs={
|
| 191 |
+
"audio_archives_iterators": [
|
| 192 |
+
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["train"]
|
| 193 |
+
],
|
| 194 |
+
"local_audio_archives_paths": local_audio_archives_paths[
|
| 195 |
+
"train"] if local_audio_archives_paths else None,
|
| 196 |
+
"meta_paths": meta_paths["train"]
|
| 197 |
+
},
|
| 198 |
+
),
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
def _generate_examples(self, audio_archives_iterators, local_audio_archives_paths, meta_paths):
|
| 202 |
+
assert len(audio_archives_iterators) == len(meta_paths)
|
| 203 |
+
if local_audio_archives_paths:
|
| 204 |
+
assert len(audio_archives_iterators) == len(local_audio_archives_paths)
|
| 205 |
+
|
| 206 |
+
for i, (meta_path, audio_archive_iterator) in enumerate(zip(meta_paths, audio_archives_iterators)):
|
| 207 |
+
meta_dict = dict()
|
| 208 |
+
with open(meta_path) as jsonl_file:
|
| 209 |
+
for line in jsonl_file:
|
| 210 |
+
meta_dict[os.path.filename(line["audpath"])[:-4]] = line
|
| 211 |
+
# data = json.loads(line.strip())
|
| 212 |
+
# meta_csv = csv.DictReader(csvfile)
|
| 213 |
+
# for line in meta_csv:
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
for audio_path_in_archive, audio_file in audio_archive_iterator:
|
| 217 |
+
# `audio_path_in_archive` is like "dev_chunks_0000/YOU1000000029_S0000095.wav"
|
| 218 |
+
audio_filename = os.path.split(audio_path_in_archive)[1]
|
| 219 |
+
audio_id = audio_filename.split(".wav")[0]
|
| 220 |
+
audio_meta = meta_dict[audio_id]
|
| 221 |
+
audio_meta["conv_id"] = audio_meta.pop("conv_id")
|
| 222 |
+
audio_meta["utterance_id"] = audio_meta.pop("utterance_id")
|
| 223 |
+
audio_meta["from"] = audio_meta.pop("from")
|
| 224 |
+
audio_meta["value"] = audio_meta.pop("value")
|
| 225 |
+
audio_meta["emotion"] = audio_meta.pop("emotion")
|
| 226 |
+
audio_meta["original_full_path"] = audio_meta.pop("audpath")
|
| 227 |
+
audio_meta["audio_id"] = audio_id
|
| 228 |
+
|
| 229 |
+
path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths \
|
| 230 |
+
else audio_path_in_archive
|
| 231 |
+
|
| 232 |
+
yield audio_id, {
|
| 233 |
+
"audio": {"path": path , "bytes": audio_file.read()},
|
| 234 |
+
**{feature: value for feature, value in audio_meta.items() if feature in self.info.features}
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def _flatten_nested_dict(nested_dict):
|
| 239 |
+
return {
|
| 240 |
+
key: [inner_list_element for inner_list in value_to_lists.values() for inner_list_element in inner_list]
|
| 241 |
+
for key, value_to_lists in nested_dict.items()
|
| 242 |
+
}
|
metadata/test_freq_metadata_0000.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
metadata/test_rare_metadata_0000.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
metadata/train_metadata_0000.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
metadata/train_metadata_0001.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
metadata/train_metadata_0002.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
metadata/train_metadata_0003.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
metadata/valid_freq_metadata_0000.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
metadata/valid_rare_metadata_0000.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|