Upload 15 files
Browse files- dataset1000/README.md +96 -0
- dataset1000/README_CN.md +151 -0
- dataset1000/stats.json +17 -0
- dataset1000/test/boards.pt +3 -0
- dataset1000/test/colors.pt +3 -0
- dataset1000/test/metadata.json +0 -0
- dataset1000/test/moves.pt +3 -0
- dataset1000/train/boards.pt +3 -0
- dataset1000/train/colors.pt +3 -0
- dataset1000/train/metadata.json +0 -0
- dataset1000/train/moves.pt +3 -0
- dataset1000/val/boards.pt +3 -0
- dataset1000/val/colors.pt +3 -0
- dataset1000/val/metadata.json +0 -0
- dataset1000/val/moves.pt +3 -0
dataset1000/README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Go Games Dataset for PyTorch Neural Network Training
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
|
5 |
+
This dataset contains Go game positions extracted from high-quality SGF files for training neural networks. The positions are organized into three strength categories based on game quality.
|
6 |
+
|
7 |
+
## Dataset Statistics
|
8 |
+
|
9 |
+
- **Total SGF Files Processed**: 61149
|
10 |
+
- **Valid SGF Files**: 0
|
11 |
+
- **Total Positions**: 29884
|
12 |
+
- **Processing Time**: 14.90 seconds
|
13 |
+
|
14 |
+
## Strength Categories
|
15 |
+
|
16 |
+
The dataset is divided into three strength categories:
|
17 |
+
|
18 |
+
- **Standard** (Quality 80-85): 2704 games, 9934 positions
|
19 |
+
- **Strong** (Quality 86-92): 3397 games, 9958 positions
|
20 |
+
- **Elite** (Quality 93-100): 55048 games, 9992 positions
|
21 |
+
|
22 |
+
## Directory Structure
|
23 |
+
|
24 |
+
```
|
25 |
+
dataset/
|
26 |
+
├── train/
|
27 |
+
│ ├── boards.pt # Board state tensors (N, C, H, W)
|
28 |
+
│ ├── moves.pt # Move labels (N,)
|
29 |
+
│ ├── colors.pt # Player colors (N,)
|
30 |
+
│ └── metadata.json # Additional information
|
31 |
+
├── val/
|
32 |
+
│ ├── boards.pt
|
33 |
+
│ ├── moves.pt
|
34 |
+
│ ├── colors.pt
|
35 |
+
│ └── metadata.json
|
36 |
+
├── test/
|
37 |
+
│ ├── boards.pt
|
38 |
+
│ ├── moves.pt
|
39 |
+
│ ├── colors.pt
|
40 |
+
│ └── metadata.json
|
41 |
+
├── stats.json # Processing statistics
|
42 |
+
└── README.md # This file
|
43 |
+
```
|
44 |
+
|
45 |
+
## Board Representation
|
46 |
+
|
47 |
+
The board state is represented as a tensor with 3 channels:
|
48 |
+
1. Black stones (1 where black stone is present, 0 elsewhere)
|
49 |
+
2. White stones (1 where white stone is present, 0 elsewhere)
|
50 |
+
3. Next player (all 1s if black to play, all 0s if white to play)
|
51 |
+
|
52 |
+
## Usage with PyTorch
|
53 |
+
|
54 |
+
```python
|
55 |
+
import torch
|
56 |
+
import json
|
57 |
+
import os
|
58 |
+
from torch.utils.data import Dataset, DataLoader
|
59 |
+
|
60 |
+
class GoDataset(Dataset):
|
61 |
+
def __init__(self, data_dir):
|
62 |
+
self.boards = torch.load(os.path.join(data_dir, "boards.pt"))
|
63 |
+
self.moves = torch.load(os.path.join(data_dir, "moves.pt"))
|
64 |
+
self.colors = torch.load(os.path.join(data_dir, "colors.pt"))
|
65 |
+
|
66 |
+
with open(os.path.join(data_dir, "metadata.json"), 'r', encoding='utf-8') as f:
|
67 |
+
self.metadata = json.load(f)
|
68 |
+
|
69 |
+
def __len__(self):
|
70 |
+
return len(self.moves)
|
71 |
+
|
72 |
+
def __getitem__(self, idx):
|
73 |
+
return {
|
74 |
+
'board': self.boards[idx],
|
75 |
+
'move': self.moves[idx],
|
76 |
+
'color': self.colors[idx]
|
77 |
+
}
|
78 |
+
|
79 |
+
# Create datasets
|
80 |
+
train_dataset = GoDataset('dataset/train')
|
81 |
+
val_dataset = GoDataset('dataset/val')
|
82 |
+
test_dataset = GoDataset('dataset/test')
|
83 |
+
|
84 |
+
# Create data loaders
|
85 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
86 |
+
val_loader = DataLoader(val_dataset, batch_size=64)
|
87 |
+
test_loader = DataLoader(test_dataset, batch_size=64)
|
88 |
+
```
|
89 |
+
|
90 |
+
## License
|
91 |
+
|
92 |
+
The dataset is intended for research and educational purposes only.
|
93 |
+
|
94 |
+
## Creation Date
|
95 |
+
|
96 |
+
This dataset was created on 2025.3.13
|
dataset1000/README_CN.md
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 围棋对弈数据集(PyTorch神经网络训练专用)
|
2 |
+
|
3 |
+
## 概述
|
4 |
+
|
5 |
+
本数据集包含从高质量SGF棋谱文件中提取的围棋对局位置,专为训练神经网络而设计。位置根据对局质量分为三个强度类别,每个类别提取了约1000个样本。
|
6 |
+
|
7 |
+
## 数据集统计
|
8 |
+
|
9 |
+
- **处理的SGF文件总数**:根据原始文件数量而定
|
10 |
+
- **有效SGF文件**:通过质量筛选的文件数
|
11 |
+
- **总位置数**:大约3000个(每个强度类别约1000个)
|
12 |
+
- **处理时间**:取决于实际运行耗时
|
13 |
+
|
14 |
+
## 强度类别
|
15 |
+
|
16 |
+
数据集根据棋谱质量分为三个强度类别:
|
17 |
+
|
18 |
+
- **标准级别** (Quality 80-85):业余高段和职业初段对局
|
19 |
+
- **强力级别** (Quality 86-92):职业中高段对局
|
20 |
+
- **精英级别** (Quality 93-100):顶尖职业选手对局
|
21 |
+
|
22 |
+
## 目录结构
|
23 |
+
|
24 |
+
```
|
25 |
+
dataset/
|
26 |
+
├── train/
|
27 |
+
│ ├── boards.pt # 棋盘状态张量 (N, C, H, W)
|
28 |
+
│ ├── moves.pt # 着法标签 (N,)
|
29 |
+
│ ├── colors.pt # 棋手颜色 (N,)
|
30 |
+
│ └── metadata.json # 附加信息
|
31 |
+
├── val/
|
32 |
+
│ ├── boards.pt
|
33 |
+
│ ├── moves.pt
|
34 |
+
│ ├── colors.pt
|
35 |
+
│ └── metadata.json
|
36 |
+
├── test/
|
37 |
+
│ ├── boards.pt
|
38 |
+
│ ├── moves.pt
|
39 |
+
│ ├── colors.pt
|
40 |
+
│ └── metadata.json
|
41 |
+
├── stats.json # 处理统计信息
|
42 |
+
└── README.md # 本文件
|
43 |
+
```
|
44 |
+
|
45 |
+
## 棋盘表示
|
46 |
+
|
47 |
+
棋盘状态表示为具有3个通道的张量:
|
48 |
+
1. 黑棋(黑子位置为1,其他位置为0)
|
49 |
+
2. 白棋(白子位置为1,其他位置为0)
|
50 |
+
3. 下一手(黑方行棋时全部为1,白方行棋时全部为0)
|
51 |
+
|
52 |
+
## PyTorch使用示例
|
53 |
+
|
54 |
+
```python
|
55 |
+
import torch
|
56 |
+
import json
|
57 |
+
import os
|
58 |
+
from torch.utils.data import Dataset, DataLoader
|
59 |
+
|
60 |
+
class GoDataset(Dataset):
|
61 |
+
def __init__(self, data_dir):
|
62 |
+
self.boards = torch.load(os.path.join(data_dir, "boards.pt"))
|
63 |
+
self.moves = torch.load(os.path.join(data_dir, "moves.pt"))
|
64 |
+
self.colors = torch.load(os.path.join(data_dir, "colors.pt"))
|
65 |
+
|
66 |
+
with open(os.path.join(data_dir, "metadata.json"), 'r', encoding='utf-8') as f:
|
67 |
+
self.metadata = json.load(f)
|
68 |
+
|
69 |
+
def __len__(self):
|
70 |
+
return len(self.moves)
|
71 |
+
|
72 |
+
def __getitem__(self, idx):
|
73 |
+
return {
|
74 |
+
'board': self.boards[idx],
|
75 |
+
'move': self.moves[idx],
|
76 |
+
'color': self.colors[idx]
|
77 |
+
}
|
78 |
+
|
79 |
+
# 创建数据集
|
80 |
+
train_dataset = GoDataset('dataset/train')
|
81 |
+
val_dataset = GoDataset('dataset/val')
|
82 |
+
test_dataset = GoDataset('dataset/test')
|
83 |
+
|
84 |
+
# 创建数据加载器
|
85 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
86 |
+
val_loader = DataLoader(val_dataset, batch_size=64)
|
87 |
+
test_loader = DataLoader(test_dataset, batch_size=64)
|
88 |
+
```
|
89 |
+
|
90 |
+
## 模型训练示例
|
91 |
+
|
92 |
+
以下是使用该数据集训练简单围棋策略网络的示例代码:
|
93 |
+
|
94 |
+
```python
|
95 |
+
import torch
|
96 |
+
import torch.nn as nn
|
97 |
+
import torch.optim as optim
|
98 |
+
|
99 |
+
# 定义一个简单的围棋策略网络
|
100 |
+
class SimplePolicyNet(nn.Module):
|
101 |
+
def __init__(self, board_size=19):
|
102 |
+
super(SimplePolicyNet, self).__init__()
|
103 |
+
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
|
104 |
+
self.conv2 = nn.Conv2d(64, 64, 3, padding=1)
|
105 |
+
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
|
106 |
+
self.fc = nn.Linear(128 * board_size * board_size, board_size * board_size)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = torch.relu(self.conv1(x))
|
110 |
+
x = torch.relu(self.conv2(x))
|
111 |
+
x = torch.relu(self.conv3(x))
|
112 |
+
x = x.view(x.size(0), -1)
|
113 |
+
x = self.fc(x)
|
114 |
+
return x
|
115 |
+
|
116 |
+
# 初始化模型、损失函数和优化器
|
117 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
118 |
+
model = SimplePolicyNet().to(device)
|
119 |
+
criterion = nn.CrossEntropyLoss()
|
120 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
121 |
+
|
122 |
+
# 训练循环
|
123 |
+
for epoch in range(10):
|
124 |
+
model.train()
|
125 |
+
running_loss = 0.0
|
126 |
+
|
127 |
+
for batch in train_loader:
|
128 |
+
boards = batch['board'].to(device)
|
129 |
+
moves = batch['move'].to(device)
|
130 |
+
|
131 |
+
optimizer.zero_grad()
|
132 |
+
outputs = model(boards)
|
133 |
+
loss = criterion(outputs, moves)
|
134 |
+
loss.backward()
|
135 |
+
optimizer.step()
|
136 |
+
|
137 |
+
running_loss += loss.item()
|
138 |
+
|
139 |
+
print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader):.4f}")
|
140 |
+
|
141 |
+
# 保存模型
|
142 |
+
torch.save(model.state_dict(), "go_policy_model.pth")
|
143 |
+
```
|
144 |
+
|
145 |
+
## 使用许可
|
146 |
+
|
147 |
+
本数据集仅供研究和教育目的使用。
|
148 |
+
|
149 |
+
## 创建日期
|
150 |
+
|
151 |
+
数据集创建于:2025-03-13
|
dataset1000/stats.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_sgf_files": 61149,
|
3 |
+
"valid_sgf_files": 0,
|
4 |
+
"processed_games": 0,
|
5 |
+
"total_positions": 29884,
|
6 |
+
"positions_by_category": {
|
7 |
+
"standard": 9934,
|
8 |
+
"strong": 9958,
|
9 |
+
"elite": 9992
|
10 |
+
},
|
11 |
+
"games_by_category": {
|
12 |
+
"standard": 2704,
|
13 |
+
"strong": 3397,
|
14 |
+
"elite": 55048
|
15 |
+
},
|
16 |
+
"processing_time": 14.901111
|
17 |
+
}
|
dataset1000/test/boards.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aed553001b0386325a0f7165a08928ba6725f7f512fa354eb2d220529c948019
|
3 |
+
size 12953815
|
dataset1000/test/colors.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58ef6d6ed61d9e73521cb401c564e35a935a95be93de8e536834afed5a17df6d
|
3 |
+
size 4119
|
dataset1000/test/metadata.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset1000/test/moves.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9517910984f011eba6123adddec4ade022caa1ed2b3859c7aa358aedc0338d2
|
3 |
+
size 25042
|
dataset1000/train/boards.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea16d6e9336f3c2b6bb9cae26bd28e7feaa9a9c9f76d2eb4e84afc3f2307ba43
|
3 |
+
size 103561943
|
dataset1000/train/colors.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:223d51806905b9fc6e2b1a1196f6d2f48cc984a881f8e54eb24044044d3749ce
|
3 |
+
size 25047
|
dataset1000/train/metadata.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset1000/train/moves.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a505415d7bc46d38b59b136abbdb50ca915ae25384fdef30a0b7c87eaa6c6ff
|
3 |
+
size 192402
|
dataset1000/val/boards.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea3cbb5460898c8c8f0acf42ba5fe35406e22f4a73ac182a595b8e872124d276
|
3 |
+
size 12945175
|
dataset1000/val/colors.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b185a613783b5afeea2e72c2411416eef0780f8778c694278772adceeee418d
|
3 |
+
size 4119
|
dataset1000/val/metadata.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset1000/val/moves.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbd036aadac6afae9b97e7abb84295c31e607092cedf935c99b58c371e16b0ea
|
3 |
+
size 25042
|