File size: 3,783 Bytes
7c93e9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
# 概述
我们采取了两种的不同的策略来微调模型,分别使用LoRA方法微调了MiniCPM-2B,使用QLoRA方法微调了ChatGLM3-6B
# ChatGLM3-6B QLoRA微调
## 依赖
Xtuner 集成 DeepSpeed 安装依赖:
```
pip install -U 'xtuner[deepspeed]'
```
## 模型训练
设置好模型位置和数据集后执行Xtuner命令进行训练
```
xtuner train ${CONFIG_NAME_OR_PATH}
```
显存消耗在13.5G左右,耗时约4个小时


## 模型文件
模型文件上传至HuggingFace
[Read_Comprehension_Chatglm3-6b_qlora](https://huggingface.co/KashiwaByte/Read_Comprehension_Chatglm3-6b_qlora/tree/main)

# MiniCPM-2B LoRA微调
设置好模型位置和数据集后运行train.sh脚本进行训练,训练显存消耗在21.5G左右,耗时约6个小时

以下分别是 train脚本的argparse超参数,Deepspeed配置和LoRA配置
#train argparse
--deepspeed ./ds_config.json \
--output_dir="./output/MiniCPM" \
--per_device_train_batch_size=4 \
--gradient_accumulation_steps=4 \
--logging_steps=10 \
--num_train_epochs=3 \
--save_steps=500 \
--learning_rate=1e-4 \
--save_on_each_node=True \
# deepspeed config
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"last_batch_iteration": -1,
"total_num_steps": "auto",
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"contiguous_gradients": true
},
"activation_checkpointing": {
"partition_activations": false,
"cpu_checkpointing": false,
"contiguous_memory_optimization": false,
"number_checkpoints": null,
"synchronize_checkpoint_boundary": false,
"profile": false
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"min_lr": 5e-7,
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
# loraConfig
config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=["q_proj", "v_proj"], # 这个不同的模型需要设置不同的参数,需要看模型中的attention层
inference_mode=False, # 训练模式
r=8, # Lora 秩
lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
lora_dropout=0.1# Dropout 比例
)
## 模型文件
模型文件上传至HuggingFace
[Read_Comprehension_MiniCPM2B](https://huggingface.co/KashiwaByte/Read_Comprehension_MiniCPM2B/tree/main)
 |