File size: 26,149 Bytes
58f02a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "b98e8110",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:09.081716Z",
"iopub.status.busy": "2025-03-25T06:21:09.081617Z",
"iopub.status.idle": "2025-03-25T06:21:09.247422Z",
"shell.execute_reply": "2025-03-25T06:21:09.247082Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Adrenocortical_Cancer\"\n",
"cohort = \"GSE49278\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Adrenocortical_Cancer\"\n",
"in_cohort_dir = \"../../input/GEO/Adrenocortical_Cancer/GSE49278\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Adrenocortical_Cancer/GSE49278.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Adrenocortical_Cancer/gene_data/GSE49278.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Adrenocortical_Cancer/clinical_data/GSE49278.csv\"\n",
"json_path = \"../../output/preprocess/Adrenocortical_Cancer/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "04223ae3",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "85d0172f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:09.248875Z",
"iopub.status.busy": "2025-03-25T06:21:09.248731Z",
"iopub.status.idle": "2025-03-25T06:21:09.416153Z",
"shell.execute_reply": "2025-03-25T06:21:09.415796Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Expression profiling by array of 44 adrenocortical carcinomas\"\n",
"!Series_summary\t\"Gene expression profiles of adrenocortical carcinomas were analyzed using Affymetrix Human Gene 2.0 ST Array to identify homogeneous molecular subgroups\"\n",
"!Series_overall_design\t\"Gene expression profiles of 44 adrenocortical carcinomas were hybridized using Affymetrix Human Gene 2.0 ST Array\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['age (years): 70', 'age (years): 26', 'age (years): 53', 'age (years): 73', 'age (years): 15', 'age (years): 51', 'age (years): 63', 'age (years): 29', 'age (years): 79', 'age (years): 45', 'age (years): 43', 'age (years): 41', 'age (years): 37', 'age (years): 81', 'age (years): 68', 'age (years): 42', 'age (years): 59', 'age (years): 39', 'age (years): 25', 'age (years): 36', 'age (years): 24', 'age (years): 49', 'age (years): 75', 'age (years): 48', 'age (years): 54', 'age (years): 28', 'age (years): 40', 'age (years): 44', 'age (years): 52', 'age (years): 30'], 1: ['gender: F', 'gender: M'], 2: ['cell type: Adrenocortical carcinoma']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "50fa822c",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c93bd0ed",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:09.417294Z",
"iopub.status.busy": "2025-03-25T06:21:09.417188Z",
"iopub.status.idle": "2025-03-25T06:21:09.427771Z",
"shell.execute_reply": "2025-03-25T06:21:09.427489Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical DataFrame Preview:\n",
"{'GSM1196511': [1.0, 70.0, 0.0], 'GSM1196512': [1.0, 26.0, 0.0], 'GSM1196513': [1.0, 53.0, 0.0], 'GSM1196514': [1.0, 73.0, 1.0], 'GSM1196515': [1.0, 15.0, 0.0], 'GSM1196516': [1.0, 51.0, 0.0], 'GSM1196517': [1.0, 63.0, 1.0], 'GSM1196518': [1.0, 26.0, 0.0], 'GSM1196519': [1.0, 29.0, 1.0], 'GSM1196520': [1.0, 79.0, 0.0], 'GSM1196521': [1.0, 45.0, 0.0], 'GSM1196522': [1.0, 43.0, 0.0], 'GSM1196523': [1.0, 53.0, 0.0], 'GSM1196524': [1.0, 45.0, 0.0], 'GSM1196525': [1.0, 41.0, 0.0], 'GSM1196526': [1.0, 37.0, 0.0], 'GSM1196527': [1.0, 81.0, 0.0], 'GSM1196528': [1.0, 68.0, 1.0], 'GSM1196529': [1.0, 42.0, 0.0], 'GSM1196530': [1.0, 59.0, 0.0], 'GSM1196531': [1.0, 39.0, 0.0], 'GSM1196532': [1.0, 25.0, 0.0], 'GSM1196533': [1.0, 41.0, 0.0], 'GSM1196534': [1.0, 36.0, 0.0], 'GSM1196535': [1.0, 24.0, 0.0], 'GSM1196536': [1.0, 49.0, 0.0], 'GSM1196537': [1.0, 75.0, 0.0], 'GSM1196538': [1.0, 37.0, 0.0], 'GSM1196539': [1.0, 26.0, 0.0], 'GSM1196540': [1.0, 48.0, 0.0], 'GSM1196541': [1.0, 15.0, 0.0], 'GSM1196542': [1.0, 49.0, 0.0], 'GSM1196543': [1.0, 54.0, 1.0], 'GSM1196544': [1.0, 39.0, 1.0], 'GSM1196545': [1.0, 79.0, 0.0], 'GSM1196546': [1.0, 28.0, 0.0], 'GSM1196547': [1.0, 40.0, 0.0], 'GSM1196548': [1.0, 44.0, 0.0], 'GSM1196549': [1.0, 28.0, 0.0], 'GSM1196550': [1.0, 53.0, 0.0], 'GSM1196551': [1.0, 28.0, 1.0], 'GSM1196552': [1.0, 52.0, 1.0], 'GSM1196553': [1.0, 30.0, 0.0], 'GSM1196554': [1.0, 46.0, 0.0]}\n",
"Clinical data saved to ../../output/preprocess/Adrenocortical_Cancer/clinical_data/GSE49278.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# From the background information: \"Expression profiling by array\" and \"Gene expression profiles...using Affymetrix Human Gene 2.0 ST Array\"\n",
"# This indicates the dataset contains gene expression data\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# Trait (Adrenocortical Cancer)\n",
"# From characteristics dictionary, key 2 contains 'cell type: Adrenocortical carcinoma'\n",
"# This is constant across all samples, but since it's the trait we're studying, we'll use it\n",
"trait_row = 2\n",
"\n",
"# Age\n",
"# From characteristics dictionary, key 0 contains age data\n",
"age_row = 0\n",
"\n",
"# Gender\n",
"# From characteristics dictionary, key 1 contains gender data\n",
"gender_row = 1\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (1 for adrenocortical carcinoma, 0 for normal)\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" value = value.split(':', 1)[1].strip().lower()\n",
" \n",
" if 'adrenocortical carcinoma' in value:\n",
" return 1\n",
" else:\n",
" return None # We don't have controls in this dataset\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" try:\n",
" age_str = value.split(':', 1)[1].strip()\n",
" return float(age_str)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" gender = value.split(':', 1)[1].strip().upper()\n",
" \n",
" if gender == 'F':\n",
" return 0\n",
" elif gender == 'M':\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Initial filtering and save metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data, # This variable should be defined in previous steps\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(clinical_df)\n",
" print(\"Clinical DataFrame Preview:\")\n",
" print(preview)\n",
" \n",
" # Save to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "820392fa",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6aecc97c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:09.428778Z",
"iopub.status.busy": "2025-03-25T06:21:09.428675Z",
"iopub.status.idle": "2025-03-25T06:21:09.695629Z",
"shell.execute_reply": "2025-03-25T06:21:09.695285Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['16650001', '16650003', '16650005', '16650007', '16650009', '16650011',\n",
" '16650013', '16650015', '16650017', '16650019', '16650021', '16650023',\n",
" '16650025', '16650027', '16650029', '16650031', '16650033', '16650035',\n",
" '16650037', '16650041'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "67d98e66",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b02afc8b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:09.696854Z",
"iopub.status.busy": "2025-03-25T06:21:09.696736Z",
"iopub.status.idle": "2025-03-25T06:21:09.698968Z",
"shell.execute_reply": "2025-03-25T06:21:09.698672Z"
}
},
"outputs": [],
"source": [
"# Examining the gene identifiers to determine if they are human gene symbols\n",
"# These identifiers (e.g., '16650001') appear to be numeric probe IDs, not human gene symbols\n",
"# Human gene symbols typically have alphanumeric patterns like \"BRCA1\", \"TP53\", etc.\n",
"# These appear to be probeset IDs from a microarray platform that need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "ebc843e2",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "69a85a70",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:09.700020Z",
"iopub.status.busy": "2025-03-25T06:21:09.699908Z",
"iopub.status.idle": "2025-03-25T06:21:12.626191Z",
"shell.execute_reply": "2025-03-25T06:21:12.625811Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['16657436', '16657440', '16657445', '16657447', '16657450'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': [12190.0, 29554.0, 69091.0, 160446.0, 317811.0], 'RANGE_END': [13639.0, 31109.0, 70008.0, 161525.0, 328581.0], 'total_probes': [25.0, 28.0, 8.0, 13.0, 36.0], 'GB_ACC': ['NR_046018', nan, nan, nan, 'NR_024368'], 'SPOT_ID': ['chr1:12190-13639', 'chr1:29554-31109', 'chr1:69091-70008', 'chr1:160446-161525', 'chr1:317811-328581'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "ef7a893f",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6f714bd5",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:12.627469Z",
"iopub.status.busy": "2025-03-25T06:21:12.627346Z",
"iopub.status.idle": "2025-03-25T06:21:13.943641Z",
"shell.execute_reply": "2025-03-25T06:21:13.943259Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original gene expression data shape: (53617, 44)\n",
"\n",
"Using probe IDs as gene identifiers (first 5 rows):\n",
" GSM1196511 GSM1196512 GSM1196513 GSM1196514 GSM1196515 \\\n",
"Gene \n",
"16650001 3.114460 2.761934 3.191700 2.981038 3.113831 \n",
"16650003 2.070307 1.831540 2.303189 2.430376 1.507325 \n",
"16650005 2.532754 3.371765 2.264750 2.647668 2.559651 \n",
"16650007 1.968311 2.229541 1.762466 2.827752 1.626150 \n",
"16650009 1.418189 1.314710 1.571579 1.233351 1.753973 \n",
"\n",
" GSM1196516 GSM1196517 GSM1196518 GSM1196519 GSM1196520 ... \\\n",
"Gene ... \n",
"16650001 2.687413 3.468881 2.411585 3.761057 2.974074 ... \n",
"16650003 2.382929 2.808405 2.031501 2.797925 2.567698 ... \n",
"16650005 3.508271 1.959297 2.764491 2.655120 1.712738 ... \n",
"16650007 2.184046 1.214179 1.664709 1.559880 2.373817 ... \n",
"16650009 1.033928 1.259945 1.239220 1.104874 1.285327 ... \n",
"\n",
" GSM1196545 GSM1196546 GSM1196547 GSM1196548 GSM1196549 \\\n",
"Gene \n",
"16650001 2.440173 2.954796 3.445082 3.388275 2.450530 \n",
"16650003 1.833832 2.025689 2.493108 2.313400 1.594192 \n",
"16650005 2.165530 4.164357 3.455904 4.223868 2.515237 \n",
"16650007 3.381329 2.235444 2.027248 1.226888 1.948129 \n",
"16650009 1.765765 0.843827 1.600953 1.369317 0.956487 \n",
"\n",
" GSM1196550 GSM1196551 GSM1196552 GSM1196553 GSM1196554 \n",
"Gene \n",
"16650001 2.293126 3.136449 2.748609 3.587116 3.194252 \n",
"16650003 2.106784 3.733405 2.427485 3.297156 1.920650 \n",
"16650005 2.956488 3.047515 1.870629 2.264684 4.401433 \n",
"16650007 1.840212 2.096553 2.489499 2.316459 1.641595 \n",
"16650009 1.137052 1.658009 1.689291 1.196682 1.994568 \n",
"\n",
"[5 rows x 44 columns]\n",
"\n",
"Number of genes/probes: 53617\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data saved to ../../output/preprocess/Adrenocortical_Cancer/gene_data/GSE49278.csv\n",
"\n",
"NOTE: For this dataset, probe IDs are being used directly as gene identifiers\n",
"because appropriate gene mapping information was not available in the provided annotation.\n"
]
}
],
"source": [
"# Since we're facing difficulties in mapping the probe IDs to gene symbols,\n",
"# we'll take a different approach for this platform (Affymetrix Human Gene 2.0 ST Array)\n",
"\n",
"print(\"Original gene expression data shape:\", gene_data.shape)\n",
"\n",
"# For this Affymetrix platform, we could try to load a proper annotation,\n",
"# but as an alternative approach, we'll use the probe IDs directly as gene identifiers\n",
"# This is a valid fallback when proper mapping isn't available\n",
"\n",
"# Clean and prepare the gene data\n",
"gene_data.index.name = 'Gene' # Rename index to 'Gene' to maintain consistency with later steps\n",
"\n",
"# Since we're using probe IDs as gene identifiers, no mapping is applied\n",
"# but we need to ensure the data is in the right format for subsequent steps\n",
"\n",
"# Preview the gene data\n",
"print(\"\\nUsing probe IDs as gene identifiers (first 5 rows):\")\n",
"print(gene_data.head())\n",
"\n",
"# Count the number of genes\n",
"print(f\"\\nNumber of genes/probes: {len(gene_data)}\")\n",
"\n",
"# Create the output directory if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"\n",
"# Save the gene data to a CSV file\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n",
"\n",
"# Add a note about the gene mapping approach\n",
"print(\"\\nNOTE: For this dataset, probe IDs are being used directly as gene identifiers\")\n",
"print(\"because appropriate gene mapping information was not available in the provided annotation.\")\n"
]
},
{
"cell_type": "markdown",
"id": "a992b1e8",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1b016c96",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:21:13.944949Z",
"iopub.status.busy": "2025-03-25T06:21:13.944832Z",
"iopub.status.idle": "2025-03-25T06:21:43.828158Z",
"shell.execute_reply": "2025-03-25T06:21:43.827839Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading original gene expression data...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Adrenocortical_Cancer/gene_data/GSE49278.csv\n",
"Gene data shape: (53617, 44)\n",
"Clinical data columns: ['GSM1196511', 'GSM1196512', 'GSM1196513', 'GSM1196514', 'GSM1196515', 'GSM1196516', 'GSM1196517', 'GSM1196518', 'GSM1196519', 'GSM1196520', 'GSM1196521', 'GSM1196522', 'GSM1196523', 'GSM1196524', 'GSM1196525', 'GSM1196526', 'GSM1196527', 'GSM1196528', 'GSM1196529', 'GSM1196530', 'GSM1196531', 'GSM1196532', 'GSM1196533', 'GSM1196534', 'GSM1196535', 'GSM1196536', 'GSM1196537', 'GSM1196538', 'GSM1196539', 'GSM1196540', 'GSM1196541', 'GSM1196542', 'GSM1196543', 'GSM1196544', 'GSM1196545', 'GSM1196546', 'GSM1196547', 'GSM1196548', 'GSM1196549', 'GSM1196550', 'GSM1196551', 'GSM1196552', 'GSM1196553', 'GSM1196554']\n",
"Transposed clinical data shape: (43, 3)\n",
"Linked data shape: (44, 53620)\n",
"Linked data columns (first 5): ['Adrenocortical_Cancer', 'Age', 'Gender', '16650001', '16650003']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"After handling missing values, linked data shape: (43, 53620)\n",
"Quartiles for 'Adrenocortical_Cancer':\n",
" 25%: 1.0\n",
" 50% (Median): 1.0\n",
" 75%: 1.0\n",
"Min: 1.0\n",
"Max: 1.0\n",
"The distribution of the feature 'Adrenocortical_Cancer' in this dataset is severely biased.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 29.5\n",
" 50% (Median): 43.0\n",
" 75%: 53.0\n",
"Min: 15.0\n",
"Max: 81.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '1.0' with 8 occurrences. This represents 18.60% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"Is trait biased: True\n",
"Dataset is not usable for trait-gene association studies.\n"
]
}
],
"source": [
"# 1. Since normalization of gene symbols failed (no IDs recognized), let's use the original gene data\n",
"print(\"Loading original gene expression data...\")\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# Save the gene data with original probe IDs\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
"print(f\"Gene data shape: {gene_data.shape}\")\n",
"\n",
"# 2. Load previously saved clinical data and link with genetic data\n",
"clinical_data_path = out_clinical_data_file\n",
"clinical_data = pd.read_csv(clinical_data_path)\n",
"print(f\"Clinical data columns: {clinical_data.columns.tolist()}\")\n",
"\n",
"# The clinical data CSV likely has columns named by sample IDs from transpose\n",
"# We need to set the columns as index before linking\n",
"clinical_data = clinical_data.set_index(clinical_data.columns[0])\n",
"\n",
"# Transpose clinical data to have samples as rows and features as columns\n",
"clinical_data = clinical_data.T\n",
"print(f\"Transposed clinical data shape: {clinical_data.shape}\")\n",
"\n",
"# Rename the columns to standard names\n",
"if len(clinical_data.columns) >= 3:\n",
" clinical_data.columns = [trait, 'Age', 'Gender']\n",
"elif len(clinical_data.columns) == 2:\n",
" clinical_data.columns = [trait, 'Age']\n",
"elif len(clinical_data.columns) == 1:\n",
" clinical_data.columns = [trait]\n",
"\n",
"# Transpose gene data to have samples as rows and genes as columns\n",
"gene_data_t = gene_data.T\n",
"\n",
"# Merge clinical and genetic data\n",
"linked_data = pd.concat([clinical_data, gene_data_t], axis=1)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# Check for the trait column\n",
"print(f\"Linked data columns (first 5): {linked_data.columns[:5].tolist()}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"After handling missing values, linked data shape: {linked_data.shape}\")\n",
"\n",
"# 4. Determine whether the trait and demographic features are severely biased\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"print(f\"Is trait biased: {is_biased}\")\n",
"\n",
"# 5. Conduct final quality validation and save cohort information\n",
"note = \"Dataset containing gene expression profiles of adrenocortical carcinomas. All samples are cancer cases (no controls), making the trait binary variable biased.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"# 6. If the linked data is usable, save it\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|