File size: 17,980 Bytes
6bc7e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "e600623e",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Adrenocortical_Cancer\"\n",
"cohort = \"GSE68950\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Adrenocortical_Cancer\"\n",
"in_cohort_dir = \"../../input/GEO/Adrenocortical_Cancer/GSE68950\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Adrenocortical_Cancer/GSE68950.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Adrenocortical_Cancer/clinical_data/GSE68950.csv\"\n",
"json_path = \"../../output/preprocess/Adrenocortical_Cancer/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "f24deabf",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "07caa148",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "2a866c39",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e1ad2cb",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "14268501",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9558f493",
"metadata": {},
"outputs": [],
"source": [
"```python\n",
"import pandas as pd\n",
"import os\n",
"import json\n",
"import numpy as np\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# Load the clinical data from the raw data file\n",
"try:\n",
" # Try loading from the matrix file directly instead of pkl\n",
" matrix_file = os.path.join(in_cohort_dir, \"matrix.csv\")\n",
" if os.path.exists(matrix_file):\n",
" clinical_data = pd.read_csv(matrix_file, index_col=0)\n",
" print(f\"Matrix file loaded successfully from {matrix_file}\")\n",
" else:\n",
" # Try to find any available data files\n",
" data_files = [f for f in os.listdir(in_cohort_dir) if f.endswith(('.txt', '.csv'))]\n",
" if data_files:\n",
" matrix_file = os.path.join(in_cohort_dir, data_files[0])\n",
" clinical_data = pd.read_csv(matrix_file, sep='\\t' if matrix_file.endswith('.txt') else ',', index_col=0)\n",
" print(f\"Data file loaded successfully from {matrix_file}\")\n",
" else:\n",
" raise FileNotFoundError(f\"No data files found in {in_cohort_dir}\")\n",
" \n",
" # Extract and examine sample characteristics\n",
" if '!Sample_characteristics_ch1' in clinical_data.index:\n",
" # Characteristics are in the rows\n",
" sample_chars = clinical_data.loc[['!Sample_characteristics_ch1']]\n",
" \n",
" # Transpose if needed to have samples as rows and characteristics as columns\n",
" if len(sample_chars.columns) > len(sample_chars.index):\n",
" # Already in the right format\n",
" characteristics_df = sample_chars\n",
" else:\n",
" characteristics_df = sample_chars.T\n",
" \n",
" print(\"Sample characteristics found in the index\")\n",
" elif '!Sample_characteristics_ch1' in clinical_data.columns:\n",
" # Characteristics are in the columns\n",
" characteristics_df = clinical_data[['!Sample_characteristics_ch1']]\n",
" print(\"Sample characteristics found in the columns\")\n",
" else:\n",
" # Look for other potential characteristic headers\n",
" potential_headers = [col for col in clinical_data.columns if 'characteristics' in col.lower()]\n",
" if potential_headers:\n",
" characteristics_df = clinical_data[potential_headers]\n",
" print(f\"Using alternative characteristic headers: {potential_headers}\")\n",
" else:\n",
" # Check if this is a standard GEO format with characteristics in multiple rows\n",
" char_rows = [i for i, idx in enumerate(clinical_data.index) if 'characteristics' in str(idx).lower()]\n",
" if char_rows:\n",
" characteristics_df = clinical_data.iloc[char_rows]\n",
" print(f\"Found characteristics in rows: {char_rows}\")\n",
" else:\n",
" raise ValueError(\"Sample characteristics not found in the data\")\n",
" \n",
" print(\"\\nData structure:\")\n",
" print(f\"Shape: {clinical_data.shape}\")\n",
" print(f\"Index: {list(clinical_data.index)[:5]}...\")\n",
" print(f\"Columns: {list(clinical_data.columns)[:5]}...\")\n",
" \n",
" # Print a sample of the characteristics\n",
" print(\"\\nSample characteristics preview:\")\n",
" print(characteristics_df.head())\n",
" \n",
" # Identify trait, age, and gender information from the characteristics\n",
" trait_row = None\n",
" age_row = None\n",
" gender_row = None\n",
" \n",
" # Collect unique values for each row to analyze content\n",
" unique_values = {}\n",
" \n",
" # Depending on the structure, extract sample characteristics\n",
" if isinstance(characteristics_df, pd.DataFrame):\n",
" # If we have multiple characteristic rows/cols\n",
" for i, row in enumerate(characteristics_df.index):\n",
" if isinstance(characteristics_df, pd.DataFrame) and len(characteristics_df.columns) > 0:\n",
" values = []\n",
" for col in characteristics_df.columns:\n",
" val = characteristics_df.loc[row, col]\n",
" if pd.notna(val):\n",
" values.append(str(val))\n",
" if values:\n",
" unique_values[i] = \"; \".join(set(values))\n",
" \n",
" # If no values were extracted using the method above, try an alternative approach\n",
" if not unique_values:\n",
" # Try to extract directly from the matrix file\n",
" for i in range(min(20, len(clinical_data))): # Check first 20 rows for characteristics\n",
" if i < len(clinical_data.index):\n",
" row_name = clinical_data.index[i]\n",
" if isinstance(row_name, str) and \"characteristics\" in row_name.lower():\n",
" values = clinical_data.iloc[i].astype(str).tolist()\n",
" unique_values[i] = \"; \".join(set(values))\n",
" \n",
" print(\"\\nUnique values for potential characteristic rows:\")\n",
" for key, value in unique_values.items():\n",
" print(f\"Row {key}: {value}\")\n",
" \n",
" # Analyze the unique values to identify trait, age, and gender\n",
" for row_idx, values in unique_values.items():\n",
" values_lower = values.lower()\n",
" \n",
" # Identify trait information\n",
" if any(term in values_lower for term in [\"diagnosis\", \"tissue\", \"tumor\", \"carcinoma\", \"status\", \"histology\", \"sample type\", \"sample_type\", \"disease\"]):\n",
" trait_row = row_idx\n",
" print(f\"Found trait row: {row_idx} - {values}\")\n",
" \n",
" # Identify age information\n",
" if \"age\" in values_lower:\n",
" age_row = row_idx\n",
" print(f\"Found age row: {row_idx} - {values}\")\n",
" \n",
" # Identify gender/sex information\n",
" if any(term in values_lower for term in [\"gender\", \"sex\"]):\n",
" gender_row = row_idx\n",
" print(f\"Found gender row: {row_idx} - {values}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing data: {e}\")\n",
" # Set default values as we couldn't analyze the data\n",
" unique_values = {}\n",
" trait_row = None\n",
" age_row = None\n",
" gender_row = None\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# For GEO datasets with GSE prefix, we generally assume they contain gene expression data\n",
"# unless we see evidence otherwise\n",
"is_gene_available = True\n",
"\n",
"# 2. Define conversion functions for each variable\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (0 for normal/control, 1 for cancer/case)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon if present\n",
" if isinstance(value, str) and \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" value_lower = str(value).lower()\n",
" \n",
" # Map to binary values for Adrenocortical Cancer\n",
" if any(term in value_lower for term in [\"normal\", \"control\", \"healthy\", \"non-tumor\", \"non tumor\", \"adjacent\", \"non-neoplastic\"]):\n",
" return 0\n",
" elif any(term in value_lower for term in [\"tumor\", \"cancer\", \"carcinoma\", \"adrenocortical\", \"adenoma\", \"adc\", \"acc\", \"malignant\"]):\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous numeric value\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon if present\n",
" if isinstance(value, str) and \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Try to extract numeric age\n",
" import re\n",
" age_match = re.search(r'(\\d+)', str(value))\n",
" if age_match:\n",
" return float(age_match.group(1))\n",
" else:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon if present\n",
" if isinstance(value, str) and \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" value_lower = str(value).lower()\n",
" \n",
" # Map to binary values\n",
" if any(\n"
]
},
{
"cell_type": "markdown",
"id": "a58a1e49",
"metadata": {},
"source": [
"### Step 4: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71b941dd",
"metadata": {},
"outputs": [],
"source": [
"# Check the raw clinical data\n",
"import os\n",
"import json\n",
"import pandas as pd\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# Let's first check what data we have\n",
"# Since we need to analyze the clinical_data, let's check if it exists\n",
"if 'clinical_data' in globals():\n",
" print(\"clinical_data exists. Examining its structure...\")\n",
" print(f\"Shape: {clinical_data.shape}\")\n",
" print(f\"First few rows:\\n{clinical_data.head()}\")\n",
" \n",
" # Look at unique values in sample characteristics to identify relevant rows\n",
" print(\"\\nUnique values in sample characteristics:\")\n",
" for i in range(clinical_data.shape[0]):\n",
" print(f\"Row {i}: {set(clinical_data.iloc[i, :])}\")\n",
"else:\n",
" print(\"clinical_data variable is not available. We need to load the data first.\")\n",
" # You might need to load the data here, but since this is a continuation, \n",
" # we'll assume the data has been loaded in a previous step.\n",
"\n",
"# Let's first check if this is a gene expression dataset\n",
"is_gene_available = True # Based on the assumption this is gene expression data\n",
" # Without detailed data, we're making a best judgment\n",
"\n",
"# Define functions to convert trait, age, and gender data\n",
"def convert_trait(value):\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" # Extract the value after colon if present\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary based on common descriptions\n",
" if value.lower() in ['normal', 'healthy', 'control', 'non-cancer', 'non cancer']:\n",
" return 0\n",
" elif value.lower() in ['cancer', 'tumor', 'adrenocortical cancer', 'acc', 'adrenocortical carcinoma']:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" # Extract the value after colon if present\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Try to convert to float\n",
" try:\n",
" # Remove any non-numeric characters except decimal point\n",
" cleaned_value = ''.join(c for c in value if c.isdigit() or c == '.')\n",
" age = float(cleaned_value)\n",
" return age\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" # Extract the value after colon if present\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary (0 for female, 1 for male)\n",
" if value.lower() in ['female', 'f', 'woman']:\n",
" return 0\n",
" elif value.lower() in ['male', 'm', 'man']:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# Assuming based on typical GEO datasets:\n",
"# We need to check if these rows actually contain the needed information\n",
"trait_row = 1 # Typically disease status is in row 1\n",
"age_row = None # Often age data is not provided\n",
"gender_row = None # Often gender data is not provided\n",
"\n",
"# Check if trait_row is valid (meaning trait data is available)\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save metadata using the validate_and_save_cohort_info function\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# Extract clinical features if trait data is available\n",
"if trait_row is not None:\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted features\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"\\nPreview of extracted clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data to the specified file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"else:\n",
" print(\"Trait data is not available. Skipping clinical feature extraction.\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|