File size: 36,116 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d004f651",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:46.454302Z",
     "iopub.status.busy": "2025-03-25T08:43:46.454159Z",
     "iopub.status.idle": "2025-03-25T08:43:46.624779Z",
     "shell.execute_reply": "2025-03-25T08:43:46.624327Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Endometrioid_Cancer\"\n",
    "cohort = \"GSE94524\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Endometrioid_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Endometrioid_Cancer/GSE94524\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Endometrioid_Cancer/GSE94524.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Endometrioid_Cancer/gene_data/GSE94524.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE94524.csv\"\n",
    "json_path = \"../../output/preprocess/Endometrioid_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "985da75b",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5c72c7bd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:46.626220Z",
     "iopub.status.busy": "2025-03-25T08:43:46.626065Z",
     "iopub.status.idle": "2025-03-25T08:43:46.814136Z",
     "shell.execute_reply": "2025-03-25T08:43:46.813558Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Tamoxifen-associated endometrial tumors expose differential enhancer activity for Estrogen Receptor alpha\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: endometrioid adenocarcinoma']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9d6c1533",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "59ef0d24",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:46.815577Z",
     "iopub.status.busy": "2025-03-25T08:43:46.815241Z",
     "iopub.status.idle": "2025-03-25T08:43:46.820659Z",
     "shell.execute_reply": "2025-03-25T08:43:46.820188Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data file not found at ../../input/GEO/Endometrioid_Cancer/GSE94524/clinical.csv. Skipping clinical feature extraction.\n"
     ]
    }
   ],
   "source": [
    "# Analysis and decisions:\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the SuperSeries description, it's likely to contain gene expression data as part of its SubSeries\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Reviewing the sample characteristics dictionary\n",
    "# For trait: We can see 'tissue: endometrioid adenocarcinoma' in row 0\n",
    "# This indicates the tissue type, which can be used as the trait information\n",
    "trait_row = 0\n",
    "\n",
    "# For age: There is no information about age in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender: There is no information about gender in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# For trait:\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Check if value indicates endometrioid cancer\n",
    "    if \"endometrioid\" in value.lower() and \"adenocarcinoma\" in value.lower():\n",
    "        return 1  # Indicates endometrioid cancer\n",
    "    else:\n",
    "        return 0  # Not endometrioid cancer\n",
    "\n",
    "# Since age and gender are not available, we'll define placeholder functions\n",
    "def convert_age(value):\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait availability based on trait_row\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial cohort info\n",
    "validate_and_save_cohort_info(is_final=False, \n",
    "                             cohort=cohort, \n",
    "                             info_path=json_path, \n",
    "                             is_gene_available=is_gene_available, \n",
    "                             is_trait_available=is_trait_available)\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Check if trait data is available\n",
    "if trait_row is not None:\n",
    "    # Define the path to the expected clinical data file\n",
    "    clinical_file_path = f\"{in_cohort_dir}/clinical.csv\"\n",
    "    \n",
    "    # Check if the file exists before trying to load it\n",
    "    if os.path.exists(clinical_file_path):\n",
    "        try:\n",
    "            clinical_data = pd.read_csv(clinical_file_path)\n",
    "            \n",
    "            # Extract clinical features\n",
    "            selected_clinical_df = geo_select_clinical_features(\n",
    "                clinical_df=clinical_data,\n",
    "                trait=trait,\n",
    "                trait_row=trait_row,\n",
    "                convert_trait=convert_trait,\n",
    "                age_row=age_row,\n",
    "                convert_age=convert_age,\n",
    "                gender_row=gender_row,\n",
    "                convert_gender=convert_gender\n",
    "            )\n",
    "            \n",
    "            # Preview the resulting dataframe\n",
    "            preview = preview_df(selected_clinical_df)\n",
    "            print(\"Preview of selected clinical features:\")\n",
    "            print(preview)\n",
    "            \n",
    "            # Save the clinical data to the specified path\n",
    "            selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "            print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "        except Exception as e:\n",
    "            print(f\"Error processing clinical data: {e}\")\n",
    "    else:\n",
    "        print(f\"Clinical data file not found at {clinical_file_path}. Skipping clinical feature extraction.\")\n",
    "else:\n",
    "    print(\"No trait data available, skipping clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f73a60ad",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ef2e7dbe",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:46.821983Z",
     "iopub.status.busy": "2025-03-25T08:43:46.821869Z",
     "iopub.status.idle": "2025-03-25T08:43:47.212851Z",
     "shell.execute_reply": "2025-03-25T08:43:47.212375Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 73\n",
      "Header line: \"ID_REF\"\t\"GSM2477471\"\t\"GSM2477472\"\t\"GSM2477473\"\t\"GSM2477474\"\t\"GSM2477475\"\t\"GSM2477476\"\t\"GSM2477477\"\t\"GSM2477478\"\t\"GSM2477479\"\t\"GSM2477480\"\t\"GSM2477481\"\t\"GSM2477482\"\t\"GSM2477483\"\t\"GSM2477484\"\t\"GSM2477485\"\t\"GSM2477486\"\t\"GSM2477487\"\t\"GSM2477488\"\t\"GSM2477489\"\t\"GSM2477490\"\t\"GSM2477491\"\t\"GSM2477492\"\t\"GSM2477493\"\t\"GSM2477494\"\t\"GSM2477495\"\t\"GSM2477496\"\t\"GSM2477497\"\t\"GSM2477498\"\t\"GSM2477499\"\t\"GSM2477500\"\t\"GSM2477501\"\t\"GSM2477502\"\t\"GSM2477503\"\t\"GSM2477504\"\t\"GSM2477505\"\t\"GSM2477506\"\t\"GSM2477507\"\t\"GSM2477508\"\t\"GSM2477509\"\t\"GSM2477510\"\t\"GSM2477511\"\t\"GSM2477512\"\t\"GSM2477513\"\t\"GSM2477514\"\t\"GSM2477515\"\t\"GSM2477516\"\t\"GSM2477517\"\t\"GSM2477518\"\t\"GSM2477519\"\t\"GSM2477520\"\t\"GSM2477521\"\t\"GSM2477522\"\t\"GSM2477523\"\t\"GSM2477524\"\t\"GSM2477525\"\t\"GSM2477526\"\t\"GSM2477527\"\t\"GSM2477528\"\t\"GSM2477529\"\t\"GSM2477530\"\t\"GSM2477531\"\t\"GSM2477532\"\t\"GSM2477533\"\t\"GSM2477534\"\t\"GSM2477535\"\t\"GSM2477536\"\t\"GSM2477537\"\t\"GSM2477538\"\t\"GSM2477539\"\t\"GSM2477540\"\t\"GSM2477541\"\t\"GSM2477542\"\t\"GSM2477543\"\t\"GSM2477544\"\t\"GSM2477545\"\t\"GSM2477546\"\t\"GSM2477547\"\t\"GSM2477548\"\t\"GSM2477549\"\t\"GSM2477550\"\t\"GSM2477551\"\t\"GSM2477552\"\t\"GSM2477553\"\t\"GSM2477554\"\t\"GSM2477555\"\t\"GSM2477556\"\t\"GSM2477557\"\t\"GSM2477558\"\t\"GSM2477559\"\t\"GSM2477560\"\t\"GSM2477561\"\t\"GSM2477562\"\t\"GSM2477563\"\t\"GSM2477564\"\t\"GSM2477565\"\t\"GSM2477566\"\t\"GSM2477567\"\t\"GSM2477568\"\t\"GSM2477569\"\t\"GSM2477570\"\t\"GSM2477571\"\t\"GSM2477572\"\t\"GSM2477573\"\t\"GSM2477574\"\t\"GSM2477575\"\t\"GSM2477576\"\t\"GSM2477577\"\t\"GSM2477578\"\t\"GSM2477579\"\t\"GSM2477580\"\t\"GSM2477581\"\n",
      "First data line: 1\t-0.0971308\t-0.721129\t-0.200969\t0.248083\t0.13323\t1.05233\t-0.751642\t0.171953\t0.161565\t-0.569857\t-0.520999\t-0.416249\t0.497888\t0.394718\t0.0659212\t0.678106\t-0.308858\t-0.513857\t0.519296\t0.941124\t0.294259\t0.604991\t0.273212\t1.34738\t0.142156\t0.201991\t0.283873\t1.07171\t-0.512929\t0.497443\t-0.418567\t-0.133336\t-0.209668\t-0.370017\t-0.256996\t-0.815727\t-0.680033\t-0.295943\t0.0412299\t-0.197013\t0.275417\t1.7749\t0.248064\t-0.00444559\t-0.128249\t-0.733087\t-1.04673\t-1.01148\t-0.204086\t-0.372505\t-0.363915\t-0.885154\t-0.292058\t-0.132823\t-0.385885\t-0.22107\t-0.5878\t0.356115\t0.224173\t2.90244\t2.30603\t-1.02894\t-0.892737\t0.120025\t-0.534206\t0.393176\t-0.267239\t0.261731\t-0.394545\t-0.00729317\t-0.431308\t-1.13973\t-0.187582\t0.693875\t-0.851932\t-0.565655\t-0.451916\t-0.649568\t-0.680746\t-0.762242\t-0.0869032\t-0.658805\t-0.871096\t0.138606\t-1.72013\t-1.12094\t0.885628\t-0.0268155\t0.678802\t-0.54545\t-0.558044\t-0.301035\t-0.116336\t-0.179637\t-0.662978\t-0.595398\t-0.146877\t-0.640617\t-0.534543\t-0.19727\t0.869927\t-0.420415\t0.757306\t0.559833\t-0.0654352\t0.130097\t-0.376034\t0.178725\t0.0695361\t-0.458078\t-0.439257\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
      "       '14', '15', '16', '17', '18', '19', '20'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "97e5177e",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "4b9bf127",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:47.214300Z",
     "iopub.status.busy": "2025-03-25T08:43:47.214158Z",
     "iopub.status.idle": "2025-03-25T08:43:47.216271Z",
     "shell.execute_reply": "2025-03-25T08:43:47.215946Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examine the gene identifiers in the gene expression data\n",
    "# Looking at the first line of data, we see numeric identifiers (1, 2, 3, etc.)\n",
    "# These appear to be numeric probe IDs and not human gene symbols\n",
    "# Typically human gene symbols would be alphanumeric identifiers like \"BRCA1\", \"TP53\", etc.\n",
    "# Therefore, these identifiers need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8e31edbc",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ccf138fe",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:47.217446Z",
     "iopub.status.busy": "2025-03-25T08:43:47.217334Z",
     "iopub.status.idle": "2025-03-25T08:43:54.875796Z",
     "shell.execute_reply": "2025-03-25T08:43:54.875160Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1', '2', '3', '4', '5'], 'MetaRow': ['12', '12', '12', '12', '12'], 'MetaCol': ['4', '4', '4', '4', '4'], 'SubRow': ['28', '27', '26', '25', '24'], 'SubCol': [28.0, 28.0, 28.0, 28.0, 28.0], 'Reporter ID': [334575.0, 333055.0, 331915.0, 330395.0, 328875.0], 'oligo_id': ['H300009761', 'H300009722', 'H300000470', 'H300000646', 'H300004276'], 'oligo_type': ['I', 'I', 'I', 'I', 'I'], 'gene_id': ['ENSG00000182037', 'ENSG00000180563', 'ENSG00000179449', 'ENSG00000177996', 'ENSG00000176539'], 'transcript_count': [1.0, 1.0, 1.0, 1.0, 1.0], 'representative_transcript_id': ['ENST00000315389', 'ENST00000316343', 'ENST00000314233', 'ENST00000325950', 'ENST00000326170'], 'HUGO': [nan, nan, 'MAGEL2', nan, nan], 'GB_LIST': [nan, nan, 'NM_019066, AF200625', nan, nan], 'GI-Bacillus': [nan, nan, nan, nan, nan], 'SPOT_ID': ['ENSG00000182037', 'ENSG00000180563', nan, 'ENSG00000177996', 'ENSG00000176539'], 'SEQUENCE': ['TTAATCTGACCTGTGAAAAACACTGTCCAGAGGCTAGGTGCGGTGGCTAACGCTTGTAATCCCAGCACTT', 'TGTTGCTGACTCGAAGTCTGAAGGAAAGTTCGATGGTGCAAAAGTTAAAGTTGCCTGGAAAAAGGTAGAC', 'AAGCTGGGCTACCATACAGGGAATTTGGTGGCATCCTATTTAGACAGGCCCAAGTTTGGCCTTCTGATGG', 'AATGCAGAAGCCTCAGGAGCCGATGCAATCAACTGGAAGAAAAGGTATCAGCAATGGAAGATGAAATGAA', 'CGCGGCACCAACCCTCAATATCTGGTGGGGAAGATCATTCGAATGCGAATCTGTGAGTCCAAGCACTGGA']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b2bd9b41",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "3399a387",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:54.877347Z",
     "iopub.status.busy": "2025-03-25T08:43:54.877207Z",
     "iopub.status.idle": "2025-03-25T08:43:55.811396Z",
     "shell.execute_reply": "2025-03-25T08:43:55.810740Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Creating gene mapping from available annotation data\n",
      "Created mapping with 13569 entries\n",
      "Applying gene mapping to convert probe data to gene expression data...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "\n",
      "Preview of gene expression data after mapping:\n",
      "        GSM2477471  GSM2477472  GSM2477473  GSM2477474  GSM2477475  \\\n",
      "Gene                                                                 \n",
      "A1BG      0.152441   -0.328190   -0.402093   -0.459311   -0.044677   \n",
      "A2M       0.194438   -1.377660   -0.561084    1.047960    0.589405   \n",
      "A4GALT    1.089600    0.343792    0.053120    0.364721    0.088068   \n",
      "AAAS     -0.532202    0.709348   -0.419568    0.101501   -0.501564   \n",
      "AADAC     0.282887   -1.911730    0.000000    3.241060    0.711206   \n",
      "\n",
      "        GSM2477476  GSM2477477  GSM2477478  GSM2477479  GSM2477480  ...  \\\n",
      "Gene                                                                ...   \n",
      "A1BG      0.990185    0.305397    0.038350   -0.176839   -0.323575  ...   \n",
      "A2M      -1.436880   -0.413543   -0.884551    0.254121    0.984051  ...   \n",
      "A4GALT   -0.122575    0.008176    0.927995   -0.029103    0.440727  ...   \n",
      "AAAS     -0.374575   -0.298828   -0.494604    0.080157    0.290037  ...   \n",
      "AADAC     0.608551   -0.038366    0.107336   -0.018521    0.159903  ...   \n",
      "\n",
      "        GSM2477572  GSM2477573  GSM2477574  GSM2477575  GSM2477576  \\\n",
      "Gene                                                                 \n",
      "A1BG     -0.110421    0.597255   -0.069516   -0.048005   -0.072845   \n",
      "A2M      -0.259256   -0.631996   -0.591483   -1.450280   -0.300649   \n",
      "A4GALT    0.226608    0.932822    0.090341   -0.265511    0.369433   \n",
      "AAAS      0.648848   -1.026081   -0.001133   -0.025974    0.771225   \n",
      "AADAC     0.196259   -1.002740   -0.493535    0.786658    0.584659   \n",
      "\n",
      "        GSM2477577  GSM2477578  GSM2477579  GSM2477580  GSM2477581  \n",
      "Gene                                                                \n",
      "A1BG     -0.355872   -0.030880    0.029083    0.168261   -0.198460  \n",
      "A2M       0.254731   -0.229838    0.735989   -0.031862    0.285643  \n",
      "A4GALT    0.915050    0.630422    0.351745    0.121407    0.875033  \n",
      "AAAS      0.033049    0.165428    0.429637   -0.398371    0.693071  \n",
      "AADAC    -0.423969    0.000000    0.036809   -0.530891    0.000000  \n",
      "\n",
      "[5 rows x 111 columns]\n",
      "Shape of gene expression data: (9628, 111)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Endometrioid_Cancer/gene_data/GSE94524.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Analyze the gene annotation dataframe to identify appropriate columns for mapping\n",
    "# The 'ID' column in gene_annotation contains numeric IDs matching the gene expression data indices\n",
    "# The 'HUGO' column appears to contain gene symbols, which is what we need for mapping\n",
    "\n",
    "# 2. Generate the gene mapping dataframe using the library function\n",
    "# This is more efficient than processing row by row\n",
    "print(\"Creating gene mapping from available annotation data\")\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='HUGO')\n",
    "\n",
    "# Check the mapping size\n",
    "print(f\"Created mapping with {len(mapping_df)} entries\")\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "print(\"Applying gene mapping to convert probe data to gene expression data...\")\n",
    "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Normalize gene symbols to ensure consistency\n",
    "print(\"Normalizing gene symbols...\")\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data_mapped)\n",
    "\n",
    "# Preview the resulting gene expression data\n",
    "print(\"\\nPreview of gene expression data after mapping:\")\n",
    "print(gene_data.head(5))\n",
    "print(f\"Shape of gene expression data: {gene_data.shape}\")\n",
    "\n",
    "# Save the processed gene expression data\n",
    "if not os.path.exists(os.path.dirname(out_gene_data_file)):\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file))\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "45291e5c",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "ee1a4285",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:55.813118Z",
     "iopub.status.busy": "2025-03-25T08:43:55.812976Z",
     "iopub.status.idle": "2025-03-25T08:43:58.828793Z",
     "shell.execute_reply": "2025-03-25T08:43:58.828181Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (9628, 111)\n",
      "First few genes with their expression values after normalization:\n",
      "        GSM2477471  GSM2477472  GSM2477473  GSM2477474  GSM2477475  \\\n",
      "Gene                                                                 \n",
      "A1BG      0.152441   -0.328190   -0.402093   -0.459311   -0.044677   \n",
      "A2M       0.194438   -1.377660   -0.561084    1.047960    0.589405   \n",
      "A4GALT    1.089600    0.343792    0.053120    0.364721    0.088068   \n",
      "AAAS     -0.532202    0.709348   -0.419568    0.101501   -0.501564   \n",
      "AADAC     0.282887   -1.911730    0.000000    3.241060    0.711206   \n",
      "\n",
      "        GSM2477476  GSM2477477  GSM2477478  GSM2477479  GSM2477480  ...  \\\n",
      "Gene                                                                ...   \n",
      "A1BG      0.990185    0.305397    0.038350   -0.176839   -0.323575  ...   \n",
      "A2M      -1.436880   -0.413543   -0.884551    0.254121    0.984051  ...   \n",
      "A4GALT   -0.122575    0.008176    0.927995   -0.029103    0.440727  ...   \n",
      "AAAS     -0.374575   -0.298828   -0.494604    0.080157    0.290037  ...   \n",
      "AADAC     0.608551   -0.038366    0.107336   -0.018521    0.159903  ...   \n",
      "\n",
      "        GSM2477572  GSM2477573  GSM2477574  GSM2477575  GSM2477576  \\\n",
      "Gene                                                                 \n",
      "A1BG     -0.110421    0.597255   -0.069516   -0.048005   -0.072845   \n",
      "A2M      -0.259256   -0.631996   -0.591483   -1.450280   -0.300649   \n",
      "A4GALT    0.226608    0.932822    0.090341   -0.265511    0.369433   \n",
      "AAAS      0.648848   -1.026081   -0.001133   -0.025974    0.771225   \n",
      "AADAC     0.196259   -1.002740   -0.493535    0.786658    0.584659   \n",
      "\n",
      "        GSM2477577  GSM2477578  GSM2477579  GSM2477580  GSM2477581  \n",
      "Gene                                                                \n",
      "A1BG     -0.355872   -0.030880    0.029083    0.168261   -0.198460  \n",
      "A2M       0.254731   -0.229838    0.735989   -0.031862    0.285643  \n",
      "A4GALT    0.915050    0.630422    0.351745    0.121407    0.875033  \n",
      "AAAS      0.033049    0.165428    0.429637   -0.398371    0.693071  \n",
      "AADAC    -0.423969    0.000000    0.036809   -0.530891    0.000000  \n",
      "\n",
      "[5 rows x 111 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Endometrioid_Cancer/gene_data/GSE94524.csv\n",
      "Raw clinical data shape: (1, 112)\n",
      "Clinical features:\n",
      "                     GSM2477471  GSM2477472  GSM2477473  GSM2477474  \\\n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM2477475  GSM2477476  GSM2477477  GSM2477478  \\\n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM2477479  GSM2477480  ...  GSM2477572  GSM2477573  \\\n",
      "Endometrioid_Cancer         1.0         1.0  ...         1.0         1.0   \n",
      "\n",
      "                     GSM2477574  GSM2477575  GSM2477576  GSM2477577  \\\n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM2477578  GSM2477579  GSM2477580  GSM2477581  \n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0  \n",
      "\n",
      "[1 rows x 111 columns]\n",
      "Clinical features saved to ../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE94524.csv\n",
      "Linked data shape: (111, 9629)\n",
      "Linked data preview (first 5 rows, first 5 columns):\n",
      "            Endometrioid_Cancer      A1BG       A2M    A4GALT      AAAS\n",
      "GSM2477471                  1.0  0.152441  0.194438  1.089600 -0.532202\n",
      "GSM2477472                  1.0 -0.328190 -1.377660  0.343792  0.709348\n",
      "GSM2477473                  1.0 -0.402093 -0.561084  0.053120 -0.419568\n",
      "GSM2477474                  1.0 -0.459311  1.047960  0.364721  0.101501\n",
      "GSM2477475                  1.0 -0.044677  0.589405  0.088068 -0.501564\n",
      "Missing values before handling:\n",
      "  Trait (Endometrioid_Cancer) missing: 0 out of 111\n",
      "  Genes with >20% missing: 0\n",
      "  Samples with >5% missing genes: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (111, 9629)\n",
      "Quartiles for 'Endometrioid_Cancer':\n",
      "  25%: 1.0\n",
      "  50% (Median): 1.0\n",
      "  75%: 1.0\n",
      "Min: 1.0\n",
      "Max: 1.0\n",
      "The distribution of the feature 'Endometrioid_Cancer' in this dataset is severely biased.\n",
      "\n",
      "Data was determined to be unusable or empty and was not saved\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if trait data is available before proceeding with clinical data extraction\n",
    "if trait_row is None:\n",
    "    print(\"Trait row is None. Cannot extract trait information from clinical data.\")\n",
    "    # Create an empty dataframe for clinical features\n",
    "    clinical_features = pd.DataFrame()\n",
    "    \n",
    "    # Create an empty dataframe for linked data\n",
    "    linked_data = pd.DataFrame()\n",
    "    \n",
    "    # Validate and save cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Trait data is not available\n",
    "        is_biased=True,  # Not applicable but required\n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=\"Dataset contains gene expression data but lacks clear trait indicators for Duchenne Muscular Dystrophy status.\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable due to missing trait indicators and was not saved\")\n",
    "else:\n",
    "    try:\n",
    "        # Get the file paths for the matrix file to extract clinical data\n",
    "        _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        \n",
    "        # Get raw clinical data from the matrix file\n",
    "        _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Verify clinical data structure\n",
    "        print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "        \n",
    "        # Extract clinical features using the defined conversion functions\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_raw,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        print(\"Clinical features:\")\n",
    "        print(clinical_features)\n",
    "        \n",
    "        # Save clinical features to file\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "        \n",
    "        # 3. Link clinical and genetic data\n",
    "        linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "        print(linked_data.iloc[:5, :5])\n",
    "        \n",
    "        # 4. Handle missing values\n",
    "        print(\"Missing values before handling:\")\n",
    "        print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Age' in linked_data.columns:\n",
    "            print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Gender' in linked_data.columns:\n",
    "            print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "        \n",
    "        gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "        print(f\"  Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
    "        print(f\"  Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
    "        \n",
    "        cleaned_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "        \n",
    "        # 5. Evaluate bias in trait and demographic features\n",
    "        is_trait_biased = False\n",
    "        if len(cleaned_data) > 0:\n",
    "            trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "            is_trait_biased = trait_biased\n",
    "        else:\n",
    "            print(\"No data remains after handling missing values.\")\n",
    "            is_trait_biased = True\n",
    "        \n",
    "        # 6. Final validation and save\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=True, \n",
    "            is_biased=is_trait_biased, \n",
    "            df=cleaned_data,\n",
    "            note=\"Dataset contains gene expression data comparing Duchenne muscular dystrophy vs healthy samples.\"\n",
    "        )\n",
    "        \n",
    "        # 7. Save if usable\n",
    "        if is_usable and len(cleaned_data) > 0:\n",
    "            os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "            cleaned_data.to_csv(out_data_file)\n",
    "            print(f\"Linked data saved to {out_data_file}\")\n",
    "        else:\n",
    "            print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "            \n",
    "    except Exception as e:\n",
    "        print(f\"Error processing data: {e}\")\n",
    "        # Handle the error case by still recording cohort info\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=False,  # Mark as not available due to processing issues\n",
    "            is_biased=True, \n",
    "            df=pd.DataFrame(),  # Empty dataframe\n",
    "            note=f\"Error processing data: {str(e)}\"\n",
    "        )\n",
    "        print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}