File size: 4,913 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Depression"
cohort = "GSE135524"

# Input paths
in_trait_dir = "../DATA/GEO/Depression"
in_cohort_dir = "../DATA/GEO/Depression/GSE135524"

# Output paths
out_data_file = "./output/preprocess/3/Depression/GSE135524.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE135524.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE135524.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes - the series studies gene expression in blood samples
is_gene_available = True 

# 2.1 Data Availability
# Trait (Depression severity) available in hamd score (row 5)
trait_row = 5 
# Age available in row 1
age_row = 1
# Gender available in row 2  
gender_row = 2

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if not isinstance(x, str):
        return None
    try:
        # Extract HAMD score which indicates depression severity
        score = int(x.split(': ')[1])
        return score # Keep as continuous
    except:
        return None

def convert_age(x):
    if not isinstance(x, str):
        return None
    try:
        age = int(x.split(': ')[1])
        return age
    except:
        return None

def convert_gender(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[1].lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted features
print(preview_df(selected_clinical_df))

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# ILMN_ prefix indicates these are Illumina probe IDs, not gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Get the mapping between gene identifiers (ID) and gene symbols (Symbol)
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')

# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Preview result
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst 5 rows and 5 columns:")
print(gene_data.iloc[:5, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Study of depression in obese patients before and after bariatric surgery"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)