File size: 5,946 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Depression"
cohort = "GSE138297"

# Input paths
in_trait_dir = "../DATA/GEO/Depression"
in_cohort_dir = "../DATA/GEO/Depression/GSE138297"

# Output paths
out_data_file = "./output/preprocess/3/Depression/GSE138297.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE138297.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE138297.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the background, this study used microarray, so gene expression data is available
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# Trait (experimental condition) is in row 6
trait_row = 6

def convert_trait(value):
    # Extract value after colon if present
    if ':' in value:
        value = value.split(':')[1].strip()
    # Convert to binary based on FMT type
    if 'Allogenic FMT' in value:
        return 1
    elif 'Autologous FMT' in value: 
        return 0
    return None

# Age is in row 3
age_row = 3

def convert_age(value):
    # Extract value after colon
    if ':' in value:
        value = value.split(':')[1].strip()
        # Convert to float if possible
        try:
            return float(value)
        except:
            return None
    return None

# Gender is in row 1
gender_row = 1

def convert_gender(value):
    # Extract value after colon
    if ':' in value:
        value = value.split(':')[1].strip()
        # Data is already coded as 1=female, 0=male
        # But we need to reverse it to match our convention (0=female, 1=male)
        try:
            return 1 - int(value) # Converts 1->0 (female) and 0->1 (male)
        except:
            return None
    return None

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Create directory if it doesn't exist
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The IDs look like probe IDs from a microarray platform since they are numerical
# and have a specific format (e.g., 16650001, 16650003). These are not standard 
# human gene symbols which typically use letters (e.g., GAPDH, TP53).
# The probes will need to be mapped to gene symbols.

requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# The 'ID' column in gene_metadata contains the same identifiers as in genetic_df
# The 'gene_assignment' column contains gene symbols and information

# Extract gene mapping dataframe 
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply gene mapping to convert probe data to gene data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Normalize gene symbols using the synonym dictionary
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save to file
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

print("\nGene data shape:", gene_data.shape)
print("\nPreview of gene data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Study of depression in obese patients before and after bariatric surgery"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)