Datasets:
File size: 3,981 Bytes
e0cd1e0 8582751 e0cd1e0 5c5287c e0cd1e0 5c5287c e0cd1e0 5c5287c e0cd1e0 5c5287c e0cd1e0 5c5287c e0cd1e0 5c5287c e0cd1e0 5c5287c e0cd1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
license: apache-2.0
task_categories:
- object-detection
language:
- en
pretty_name: Detection Moving MNIST (Easy)
size_categories:
- 100K<n<1M
---
# Detection Moving MNIST (Easy)
| | |
|:--------:|:---------:|
|  |  |
### Description
**Repository:** https://github.com/maxploter/detection-moving-mnist
A synthetic video dataset for object detection and tracking, featuring moving MNIST digits with:
- 1-10 digits per sequence
- Linear trajectories with small random translations
- 128x128 resolution grayscale frames
- 20 frames per video sequence
- Digit size 28x28
- Per-frame annotations including:
- Digit labels (0-9)
- Center coordinates (x,y)
### Supported Tasks
- Object detection in video
- Multi-object tracking
- Video understanding
- Spatiotemporal modeling
## Structure
### Data Instances
A typical example contains:
```python
{
'video': [video frames], # Array of shape (20, 128, 128, 3)
'targets': [{
'labels': List[int], # Digit classes present
'center_points': List[Tuple], # (x,y) coordinates
} for each frame]
}
```
### Data Format
- Arrow
- Total dataset size: approximately {PLACEHOLDER} GB
- Frame rate: 10 fps
## Data Splits
| Split | Size |
|--------|----------|
| Train | 60,000 |
| Test | 10,000 |
## Dataset Creation
### Source Data
- Original MNIST Dataset: http://yann.lecun.com/exdb/mnist/
- Synthetic Generation: Custom Moving MNIST implementation
## Annotations
- Automatically generated during sequence creation
- Includes digit classes and trajectory coordinates
### Simulation Parameters (Easy Mode)
```
{
"angle": (0, 0), # No rotation
"translate": ((-5, 5), (-5, 5)), # Small random translations
"scale": (1, 1), # Fixed size
"shear": (0, 0), # No deformation
"num_digits": (1,2,3,4,5,6,7,8,9,10) # Variable object count
}
```
## Dataset Statistics
| Statistic | Value |
|------------------------------|-------------------|
| Mean (Train) | 0.023958550628466375 |
| Standard Deviation (Train) | 0.14140212075592035 |
| Mean (Test) | 0.024210869560423308 |
| Standard Deviation (Test) | 0.1423791946229605 |
You can check those numbers in the file: [dataset_stats](./dataset_stats.json)




## Using the Dataset
### Basic Loading
```python
from datasets import load_dataset
dataset = load_dataset("Max-Ploter/detection-moving-mnist-easy")
```
### Visualization Example
```python
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# Load a single example
example = dataset['train'][0]
frames = example['video']
annotations = example['targets']
# Visualize first frame with bounding boxes
plt.figure(figsize=(8, 8))
plt.imshow(frames[0], cmap='gray')
# Draw bounding boxes
for label, center in zip(annotations[0]['labels'], annotations[0]['center_points']):
x, y = center
# Assuming digit size of approximately 28x28 pixels
rect = patches.Rectangle((x-14, y-14), 28, 28, linewidth=1,
edgecolor='r', facecolor='none')
plt.gca().add_patch(rect)
plt.text(x, y-20, str(label), color='white', fontsize=12,
bbox=dict(facecolor='red', alpha=0.5))
plt.title('Frame 0 with Object Detection')
plt.axis('off')
plt.show()
```
## Limitations
- Synthetic dataset with simple black backgrounds
- Linear trajectories may not represent complex real-world motion
- No complex occlusion handling or object interactions
- No lighting variations or perspective transformations
## Related Datasets
- Original Moving MNIST: http://www.cs.toronto.edu/~nitish/unsupervised_video/
|