File size: 3,981 Bytes
e0cd1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
8582751
 
 
 
e0cd1e0
5c5287c
e0cd1e0
5c5287c
e0cd1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5287c
e0cd1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5287c
e0cd1e0
 
 
 
 
5c5287c
e0cd1e0
5c5287c
 
e0cd1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5287c
 
 
 
 
 
 
 
 
 
 
 
e0cd1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: apache-2.0
task_categories:
- object-detection
language:
- en
pretty_name: Detection Moving MNIST (Easy)
size_categories:
- 100K<n<1M
---


# Detection Moving MNIST (Easy)

|  |  |
|:--------:|:---------:|
| ![annotated_video_0](./annotated_video_0.gif) | ![annotated_video_1](./annotated_video_1.gif) |


### Description

**Repository:** https://github.com/maxploter/detection-moving-mnist


A synthetic video dataset for object detection and tracking, featuring moving MNIST digits with:
- 1-10 digits per sequence
- Linear trajectories with small random translations
- 128x128 resolution grayscale frames
- 20 frames per video sequence
- Digit size 28x28
- Per-frame annotations including:
  - Digit labels (0-9)
  - Center coordinates (x,y)

### Supported Tasks

- Object detection in video
- Multi-object tracking
- Video understanding
- Spatiotemporal modeling

## Structure

### Data Instances

A typical example contains:
```python
{
    'video': [video frames],  # Array of shape (20, 128, 128, 3)
    'targets': [{
        'labels': List[int],          # Digit classes present
        'center_points': List[Tuple], # (x,y) coordinates
    } for each frame]
}
```

### Data Format
- Arrow
- Total dataset size: approximately {PLACEHOLDER} GB
- Frame rate: 10 fps

## Data Splits

| Split  | Size   |
|--------|----------|
| Train  | 60,000  |
| Test   | 10,000   |

## Dataset Creation

### Source Data
- Original MNIST Dataset: http://yann.lecun.com/exdb/mnist/
- Synthetic Generation: Custom Moving MNIST implementation

## Annotations

- Automatically generated during sequence creation
- Includes digit classes and trajectory coordinates

### Simulation Parameters (Easy Mode)
```
{
    "angle": (0, 0),         # No rotation
    "translate": ((-5, 5), (-5, 5)),  # Small random translations
    "scale": (1, 1),         # Fixed size
    "shear": (0, 0),         # No deformation
    "num_digits": (1,2,3,4,5,6,7,8,9,10)  # Variable object count
}
```

## Dataset Statistics

| Statistic                    | Value             |
|------------------------------|-------------------|
| Mean (Train)               | 0.023958550628466375     |
| Standard Deviation (Train) | 0.14140212075592035     |
| Mean (Test)               | 0.024210869560423308     |
| Standard Deviation (Test) | 0.1423791946229605     |

You can check those numbers in the file: [dataset_stats](./dataset_stats.json)

![train_digit_classes](./train_digit_classes.png)
![test_digit_classes](./test_digit_classes.png)

![train_digits_per_frame](./train_digits_per_frame.png)
![test_digits_per_frame](./test_digits_per_frame.png)

## Using the Dataset

### Basic Loading
```python
from datasets import load_dataset
dataset = load_dataset("Max-Ploter/detection-moving-mnist-easy")
```

### Visualization Example
```python
import matplotlib.pyplot as plt
import matplotlib.patches as patches

# Load a single example
example = dataset['train'][0]
frames = example['video']
annotations = example['targets']

# Visualize first frame with bounding boxes
plt.figure(figsize=(8, 8))
plt.imshow(frames[0], cmap='gray')

# Draw bounding boxes
for label, center in zip(annotations[0]['labels'], annotations[0]['center_points']):
    x, y = center
    # Assuming digit size of approximately 28x28 pixels
    rect = patches.Rectangle((x-14, y-14), 28, 28, linewidth=1, 
                             edgecolor='r', facecolor='none')
    plt.gca().add_patch(rect)
    plt.text(x, y-20, str(label), color='white', fontsize=12, 
             bbox=dict(facecolor='red', alpha=0.5))

plt.title('Frame 0 with Object Detection')
plt.axis('off')
plt.show()
```

## Limitations

- Synthetic dataset with simple black backgrounds
- Linear trajectories may not represent complex real-world motion
- No complex occlusion handling or object interactions
- No lighting variations or perspective transformations

## Related Datasets

- Original Moving MNIST: http://www.cs.toronto.edu/~nitish/unsupervised_video/