File size: 2,053 Bytes
aa1f472 d5197b7 9455295 d5197b7 9455295 d5197b7 9455295 d5197b7 9455295 d5197b7 9455295 d5197b7 9455295 d5197b7 9455295 d5197b7 aa1f472 d5197b7 9455295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
task_categories:
- token-classification
- text-classification
language:
- ar
- da
- de
- en
- es
- fr
- hi
- hr
- id
- ja
- ko
- nl
- pt
- ru
- sk
- sv
- sw
- th
- tr
- vi
- zh
tags:
- aspect-based-sentiment-analysis
size_categories:
- 100K<n<1M
---
# M-ABSA
This repo contains the data for our paper ****M-ABSA: A Multilingual Dataset for Aspect-Based Sentiment Analysis****.
[](https://arxiv.org/abs/2502.11824)
# Data Description:
This is a dataset suitable for the __multilingual ABSA__ task with __triplet extraction__.
All datasets are stored in the data/ folder:
- All dataset contains __7__ domains.
```
domains = ["coursera", "hotel", "laptop", "restaurant", "phone", "sight", "food"]
```
- Each dataset contains __21__ languages.
```
langs = ["ar", "da", "de", "en", "es", "fr", "hi", "hr", "id", "ja", "ko", "nl", "pt", "ru", "sk", "sv", "sw", "th", "tr", "vi", "zh"]
```
- The labels contain triplets with __[aspect term, aspect category, sentiment polarity]__. Each sentence is separated by __"####"__, with the first part being the sentence and the second part being the corresponding triplet. Here is an example, where the triplet includes __[aspect term, aspect category, sentiment polarity]__.
```
This coffee brews up a nice medium roast with exotic floral and berry notes .####[['coffee', 'food quality', 'positive']]
```
- Each dataset is divided into training, validation, and test sets.
## Citation
If the code or dataset is used in your research, please star our repo and cite our paper as follows:
```
@misc{wu2025mabsa,
title={M-ABSA: A Multilingual Dataset for Aspect-Based Sentiment Analysis},
author={Chengyan Wu and Bolei Ma and Yihong Liu and Zheyu Zhang and Ningyuan Deng and Yanshu Li and Baolan Chen and Yi Zhang and Yun Xue and Barbara Plank},
year={2025},
eprint={2502.11824},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.11824},
}
``` |