Datasets:
Tasks:
Text Generation
Modalities:
Text
Formats:
json
Sub-tasks:
language-modeling
Size:
1M - 10M
ArXiv:
License:
File size: 56,721 Bytes
e862fd9 b59817e e862fd9 b59817e e862fd9 b59817e e862fd9 b59817e e862fd9 b59817e 9af93b5 b59817e 857a583 b59817e e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 857a583 e862fd9 b59817e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
---
YAML tags: null
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
- nb
- 'no'
- nn
- sv
- da
- is
- fo
license: cc
multilinguality:
- multilingual
pretty_name: NCC
size_categories:
- 2G<n<1B
source_datasets:
- original
task_categories:
- text-generation
task_ids:
- language-modeling
---
# Dataset Card for NbAiLab/NCC
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Data Fields](#data-fiels)
- [Dataset Creation](#dataset-creation)
- [Statistics](#statistics)
- [Document Types](#document-types)
- [Languages](#languages)
- [Publish Periode](#publish-periode)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://github.com/NbAiLab/notram
- **Repository:** https://github.com/NbAiLab/notram
- **Paper:** https://arxiv.org/abs/2104.09617
- **Point of Contact:** [Freddy Wetjen](mailto:[email protected])
---
<div style="border: 2px solid red; padding: 10px; border-radius: 5px;">
### ⚠️ Important Update (December 2024)
Previously, newspapers were a significant part of the Norwegian Colossal Corpus (NCC), particularly the newspapers distributed under the so called "Språkbank-avtalen". As of December 2024, at the request of media houses, we have ceased distributing newspapers under this agreement, including the "Norsk Aviskorpus." However, NCC still includes numerous newspapers that are released under more open agreements.
</div>
---
The Norwegian Colossal Corpus is a collection of multiple smaller Norwegian corpuses suitable for training large language models. We have done extensive cleaning on the datasets, and have made them available in a common format. The total size of the NCC is currently 30GB. The cleaning of the dataset is optimised for encoder models. If you are building a decoder model, it is usually advised to be a bit stricter on the cleaning procedure. We have included meta-data like source, publication year and languaguage confidence to aid this cleaning.
## Licenses
| Corpus | License |
|------------------------|----------------------------------------------------------------------------------|
| Library Newspapers | [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) |
| Library Books | [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) |
| LovData CD | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/) |
| Government Reports | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/) |
| Parliament Collections | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/) |
| Public Reports | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/) |
| Målfrid Collection | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/) |
| Wikipedia | [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) |
## How to Use
```python
from datasets import load_dataset
data = load_dataset("NbAiLab/NCC", streaming=True)
```
## Download Data
If you do not want to use the HuggingFace Dataset-library for training, or if you want to do additional pre-processing, it is also possible to download the files locally.
```bash
# Clone the training set
git clone https://huggingface.co/datasets/NbAiLab/NCC
# Create one large training file of all shards without unpacking
cat NCC/data/train*.gz > onefile.json.gz
```
<details>
<summary>List of all the files.</summary>
* [train-shard-0001-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0001-of-0046.json.gz)
* [train-shard-0002-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0002-of-0046.json.gz)
* [train-shard-0003-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0003-of-0046.json.gz)
* [train-shard-0004-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0004-of-0046.json.gz)
* [train-shard-0005-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0005-of-0046.json.gz)
* [train-shard-0006-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0006-of-0046.json.gz)
* [train-shard-0007-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0007-of-0046.json.gz)
* [train-shard-0008-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0008-of-0046.json.gz)
* [train-shard-0009-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0009-of-0046.json.gz)
* [train-shard-0010-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0010-of-0046.json.gz)
* [train-shard-0011-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0011-of-0046.json.gz)
* [train-shard-0012-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0012-of-0046.json.gz)
* [train-shard-0013-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0013-of-0046.json.gz)
* [train-shard-0014-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0014-of-0046.json.gz)
* [train-shard-0015-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0015-of-0046.json.gz)
* [train-shard-0016-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0016-of-0046.json.gz)
* [train-shard-0017-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0017-of-0046.json.gz)
* [train-shard-0018-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0018-of-0046.json.gz)
* [train-shard-0019-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0019-of-0046.json.gz)
* [train-shard-0020-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0020-of-0046.json.gz)
* [train-shard-0021-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0021-of-0046.json.gz)
* [train-shard-0022-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0022-of-0046.json.gz)
* [train-shard-0023-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0023-of-0046.json.gz)
* [train-shard-0024-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0024-of-0046.json.gz)
* [train-shard-0025-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0025-of-0046.json.gz)
* [train-shard-0026-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0026-of-0046.json.gz)
* [train-shard-0027-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0027-of-0046.json.gz)
* [train-shard-0028-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0028-of-0046.json.gz)
* [train-shard-0029-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0029-of-0046.json.gz)
* [train-shard-0030-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0030-of-0046.json.gz)
* [train-shard-0031-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0031-of-0046.json.gz)
* [train-shard-0032-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0032-of-0046.json.gz)
* [train-shard-0033-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0033-of-0046.json.gz)
* [train-shard-0034-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0034-of-0046.json.gz)
* [train-shard-0035-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0035-of-0046.json.gz)
* [train-shard-0036-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0036-of-0046.json.gz)
* [train-shard-0037-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0037-of-0046.json.gz)
* [train-shard-0038-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0038-of-0046.json.gz)
* [train-shard-0039-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0039-of-0046.json.gz)
* [train-shard-0040-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0040-of-0046.json.gz)
* [train-shard-0041-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0041-of-0046.json.gz)
* [train-shard-0042-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0042-of-0046.json.gz)
* [train-shard-0043-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0043-of-0046.json.gz)
* [train-shard-0044-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0044-of-0046.json.gz)
* [train-shard-0045-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0045-of-0046.json.gz)
* [train-shard-0046-of-0046](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/train-shard-0046-of-0046.json.gz)
* [validation-shard-0001-of-0001](https://huggingface.co/datasets/NbAiLab/NCC/resolve/main/data/validation-shard-0001-of-0001.json.gz)
</details>
### Dataset Summary
The NCC dataset contains json lines with language training data. Here is an example json line:
```json
{
"id": "1006205",
"doc_type": "cc100",
"publish_year": 2021,
"lang_fasttext": "nn",
"lang_fasttext_conf": "0.641",
"text": "Eg har ein PLAN! KOS deg og ha ei fin helg"
}
```
## Data Fields
|**id:** | String with id to source of line and a unique identifier|
|:-----------|:------------|
|**doc_type** | String describing type of media text extracted from (I.e. book,newspaper etc)|
|**publish_year** | Integer. The year text published. When year is undetermined it is set to 2021.|
|**lang_fasttext** | String. Language of text identified by FastText|
|**lang_fasttext_conf** | String. Confidence calculated by FastText|
|**text** | String. The complete utf-8 document. If longer than 1M characters it is split.|
### Dataset Creation
We are providing a **train** and a **validation** split. The standard size of the validation is a single 650Mb file, while train is sharded in 650Mb chunks.
Build date original corpus: 21012022
Build data revised corpus: 10032025
#### Initial Data Collection and Curation
The procedure for the dataset creation is described in detail in our papers.
### Summary
| Words | Documents | Words/Document |
|--------------:|------------:|-----------------:|
| 4,629,683,886 | 8,176,399 | 566 |
### Document Types
| Source | Words | Documents | Words/Document |
|--------------------------------------:|--------------:|------------:|-----------------:|
| parliament | 1,301,766,124 | 9,528 | 136,625 |
| books | 861,465,925 | 24,253 | 35,519 |
| maalfrid_regjeringen | 368,581,048 | 940,936 | 391 |
| maalfrid_ssb | 286,024,843 | 871,262 | 328 |
| maalfrid_uio | 186,003,662 | 788,988 | 235 |
| government_nb | 136,708,062 | 3,557 | 38,433 |
| newspaper_ocr | 129,670,570 | 665,344 | 194 |
| wikipedia_download_nbo | 113,329,164 | 535,461 | 211 |
| maalfrid_fylkesmannen | 105,197,012 | 473,582 | 222 |
| publicreports | 80,064,396 | 3,365 | 23,793 |
| maalfrid_nve | 68,194,532 | 308,924 | 220 |
| maalfrid_patentstyret | 66,482,941 | 218,930 | 303 |
| maalfrid_ntnu | 59,108,734 | 203,770 | 290 |
| lovdata_cd_odelsting_2005 | 37,295,277 | 1,987 | 18,769 |
| maalfrid_vegvesen | 34,177,216 | 169,998 | 201 |
| maalfrid_fhi | 33,541,094 | 147,668 | 227 |
| maalfrid_norad | 33,454,343 | 95,191 | 351 |
| maalfrid_skatteetaten | 33,313,015 | 84,448 | 394 |
| maalfrid_uib | 29,049,822 | 118,328 | 245 |
| wikipedia_download_nno | 27,663,552 | 146,512 | 188 |
| maalfrid_forskningsradet | 24,647,599 | 75,104 | 328 |
| maalfrid_nasjonalparkstyre | 21,795,981 | 95,990 | 227 |
| government_nn | 18,610,692 | 1,091 | 17,058 |
| maalfrid_nmbu | 18,493,389 | 71,320 | 259 |
| maalfrid_oslomet | 18,140,360 | 48,140 | 376 |
| maalfrid_domstol | 17,073,430 | 52,233 | 326 |
| maalfrid_banenor | 16,805,767 | 71,933 | 233 |
| maalfrid_nav | 16,651,084 | 75,792 | 219 |
| maalfrid_landbruksdirektoratet | 13,398,273 | 49,021 | 273 |
| maalfrid_helsedirektoratet | 13,312,827 | 50,476 | 263 |
| maalfrid_nokut | 10,332,870 | 39,426 | 262 |
| maalfrid_hi | 10,272,572 | 39,923 | 257 |
| maalfrid_norges-bank | 10,135,291 | 37,988 | 266 |
| maalfrid_udir | 10,102,549 | 39,632 | 254 |
| maalfrid_vkm | 10,041,892 | 32,960 | 304 |
| maalfrid_nbim | 9,841,446 | 18,532 | 531 |
| maalfrid_miljodirektoratet | 9,704,590 | 35,482 | 273 |
| maalfrid_distriktssenteret | 9,598,023 | 39,415 | 243 |
| maalfrid_ngu | 9,454,229 | 35,414 | 266 |
| maalfrid_ptil | 9,416,592 | 35,024 | 268 |
| maalfrid_nord | 9,192,052 | 45,786 | 200 |
| maalfrid_fiskeridir | 8,482,774 | 34,167 | 248 |
| maalfrid_hivolda | 7,993,548 | 27,057 | 295 |
| maalfrid_difi | 7,971,205 | 36,605 | 217 |
| maalfrid_mattilsynet | 7,663,012 | 27,614 | 277 |
| maalfrid_havarikommisjonen | 7,607,533 | 25,552 | 297 |
| maalfrid_kulturradet | 7,364,355 | 22,951 | 320 |
| maalfrid_ks | 7,065,314 | 28,029 | 252 |
| maalfrid_kystverket | 6,870,772 | 31,694 | 216 |
| maalfrid_udi | 6,566,701 | 19,529 | 336 |
| maalfrid_uia | 6,094,660 | 24,397 | 249 |
| maalfrid_hjelpemiddeldatabasen | 6,029,923 | 34,946 | 172 |
| maalfrid_khrono | 5,993,140 | 20,431 | 293 |
| maalfrid_helsetilsynet | 5,913,602 | 18,721 | 315 |
| maalfrid_moreforsk | 5,755,447 | 22,089 | 260 |
| maalfrid_jernbanedirektoratet | 5,589,074 | 22,150 | 252 |
| maalfrid_veiviseren | 5,438,472 | 18,441 | 294 |
| lovdata_cd_somb_rundskriv_2005 | 5,400,486 | 3,284 | 1,644 |
| maalfrid_dsb | 5,312,625 | 18,200 | 291 |
| lovdata_cd_sentrale_forskrifter_2005 | 5,178,059 | 11,745 | 440 |
| maalfrid_husbanken | 4,810,203 | 15,375 | 312 |
| maalfrid_legemiddelverket | 4,795,154 | 20,634 | 232 |
| maalfrid_vetinst | 4,776,782 | 14,839 | 321 |
| maalfrid_imdi | 4,744,408 | 15,642 | 303 |
| maalfrid_forsvarsbygg | 4,672,409 | 19,287 | 242 |
| maalfrid_sdir | 4,640,185 | 15,547 | 298 |
| maalfrid_konkurransetilsynet | 4,618,590 | 12,912 | 357 |
| maalfrid_arkivverket | 4,603,524 | 16,899 | 272 |
| maalfrid_dsa | 4,595,530 | 16,242 | 282 |
| maalfrid_hiof | 4,580,991 | 23,675 | 193 |
| maalfrid_ehelse | 4,478,908 | 23,074 | 194 |
| maalfrid_inn | 4,420,070 | 26,840 | 164 |
| maalfrid_klagenemndssekretariatet | 4,287,067 | 12,208 | 351 |
| maalfrid_sprakradet | 4,180,404 | 15,521 | 269 |
| maalfrid_nhh | 4,063,920 | 16,068 | 252 |
| maalfrid_dibk | 4,058,208 | 15,855 | 255 |
| maalfrid_kartverket | 3,814,376 | 19,110 | 199 |
| maalfrid_riksrevisjonen | 3,783,728 | 11,216 | 337 |
| maalfrid_toll | 3,595,842 | 14,122 | 254 |
| maalfrid_nibio | 3,531,231 | 17,464 | 202 |
| maalfrid_met | 3,528,846 | 18,689 | 188 |
| maalfrid_bufdir | 3,425,362 | 11,720 | 292 |
| maalfrid_artsdatabanken | 3,275,378 | 9,242 | 354 |
| maalfrid_politiet | 3,239,913 | 10,728 | 302 |
| maalfrid_nkom | 3,197,196 | 10,214 | 313 |
| maalfrid_vestlandfylke | 3,127,665 | 12,337 | 253 |
| maalfrid_uis | 2,988,424 | 10,045 | 297 |
| maalfrid_sykkelbynettverket | 2,880,916 | 12,086 | 238 |
| maalfrid_nlr | 2,702,753 | 16,178 | 167 |
| maalfrid_seniorporten | 2,672,667 | 8,295 | 322 |
| maalfrid_npd | 2,657,179 | 10,989 | 241 |
| maalfrid_custompublish | 2,493,062 | 9,404 | 265 |
| maalfrid_aldringoghelse | 2,475,601 | 6,927 | 357 |
| maalfrid_bioteknologiradet | 2,450,272 | 6,135 | 399 |
| maalfrid_nyemetoder | 2,426,982 | 10,999 | 220 |
| maalfrid_arbeidstilsynet | 2,426,255 | 7,030 | 345 |
| maalfrid_riksantikvaren | 2,300,159 | 8,933 | 257 |
| maalfrid_sjt | 2,292,578 | 11,455 | 200 |
| lovdata_cd_lokaleforskrifter_2005 | 2,233,543 | 22,824 | 97 |
| maalfrid_hvl | 2,194,063 | 9,604 | 228 |
| maalfrid_luftfartstilsynet | 2,149,215 | 10,092 | 212 |
| maalfrid_dfo | 2,123,797 | 9,384 | 226 |
| maalfrid_ldo | 2,093,301 | 7,471 | 280 |
| maalfrid_kompetansenorge | 1,997,363 | 10,496 | 190 |
| maalfrid_forbrukerradet | 1,992,302 | 7,493 | 265 |
| maalfrid_himolde | 1,959,626 | 10,200 | 192 |
| maalfrid_usn | 1,828,928 | 7,553 | 242 |
| lovdata_cd_norgeslover_2005 | 1,802,578 | 1,419 | 1,270 |
| maalfrid_naku | 1,786,086 | 5,328 | 335 |
| maalfrid_medietilsynet | 1,648,462 | 6,758 | 243 |
| maalfrid_matematikksenteret | 1,608,332 | 7,474 | 215 |
| maalfrid_diku | 1,579,996 | 6,383 | 247 |
| maalfrid_forskningsetikk | 1,573,014 | 5,653 | 278 |
| maalfrid_godeidrettsanlegg | 1,539,910 | 6,252 | 246 |
| maalfrid_dirmin | 1,500,122 | 5,427 | 276 |
| maalfrid_diskrimineringsnemnda | 1,498,443 | 4,270 | 350 |
| maalfrid_naturfag | 1,481,316 | 6,108 | 242 |
| maalfrid_arbeidsretten | 1,473,299 | 4,864 | 302 |
| lovdata_cd_rtv_rundskriv_2005 | 1,392,547 | 9,831 | 141 |
| maalfrid_fellesstudentsystem | 1,392,117 | 10,553 | 131 |
| maalfrid_nupi | 1,322,743 | 5,628 | 235 |
| maalfrid_kriminalitetsforebygging | 1,223,976 | 4,769 | 256 |
| maalfrid_anskaffelser | 1,214,995 | 5,602 | 216 |
| maalfrid_folketrygdfondet | 1,212,747 | 4,347 | 278 |
| maalfrid_miljopakken | 1,195,869 | 5,634 | 212 |
| maalfrid_nih | 1,146,471 | 5,415 | 211 |
| lovdata_cd_skatt_rundskriv_2005 | 1,138,339 | 411 | 2,769 |
| maalfrid_statsbygg | 1,125,666 | 4,520 | 249 |
| maalfrid_nb | 1,085,457 | 4,251 | 255 |
| maalfrid_unit | 1,072,199 | 6,476 | 165 |
| maalfrid_npolar | 1,071,381 | 2,708 | 395 |
| maalfrid_valgdirektoratet | 1,028,381 | 9,316 | 110 |
| maalfrid_barneombudet | 1,001,224 | 2,863 | 349 |
| maalfrid_datatilsynet | 990,582 | 3,018 | 328 |
| maalfrid_lottstift | 985,351 | 3,676 | 268 |
| maalfrid_aho | 977,116 | 4,637 | 210 |
| maalfrid_sykehuspartner | 961,362 | 4,693 | 204 |
| maalfrid_naturfagsenteret | 922,174 | 3,957 | 233 |
| maalfrid_khio | 869,917 | 3,457 | 251 |
| maalfrid_spesialenheten | 845,989 | 2,188 | 386 |
| maalfrid_xn--miljlftet-o8ab | 822,783 | 3,468 | 237 |
| maalfrid_samordnaopptak | 805,644 | 2,415 | 333 |
| maalfrid_helsenorge | 802,003 | 3,116 | 257 |
| maalfrid_skrivesenteret | 793,053 | 4,250 | 186 |
| maalfrid_mareano | 784,843 | 3,821 | 205 |
| maalfrid_fiskeridirektoratet | 772,720 | 2,499 | 309 |
| maalfrid_sykehusinnkjop | 754,616 | 4,440 | 169 |
| maalfrid_matportalen | 641,663 | 2,413 | 265 |
| maalfrid_spk | 621,687 | 2,181 | 285 |
| maalfrid_pasientsikkerhetsprogrammet | 610,855 | 4,796 | 127 |
| maalfrid_justervesenet | 607,767 | 1,946 | 312 |
| maalfrid_nhn | 594,591 | 3,665 | 162 |
| maalfrid_sshf | 589,448 | 1,950 | 302 |
| maalfrid_bibliotekutvikling | 573,724 | 3,295 | 174 |
| maalfrid_nysgjerrigper | 572,860 | 3,088 | 185 |
| maalfrid_nodnett | 549,483 | 2,743 | 200 |
| maalfrid_giek | 525,782 | 1,840 | 285 |
| maalfrid_une | 524,664 | 1,281 | 409 |
| maalfrid_samas | 512,469 | 2,610 | 196 |
| maalfrid_kriminalomsorgen | 506,869 | 1,990 | 254 |
| maalfrid_kjonnsforskning | 495,072 | 1,464 | 338 |
| lovdata_cd_rundskriv_lovavdeling_2005 | 482,605 | 419 | 1,151 |
| maalfrid_kunstkultursenteret | 478,748 | 1,460 | 327 |
| maalfrid_nynorsksenteret | 472,484 | 2,147 | 220 |
| maalfrid_ceres | 457,001 | 1,988 | 229 |
| maalfrid_stami | 456,707 | 1,190 | 383 |
| maalfrid_nsm | 452,597 | 1,573 | 287 |
| maalfrid_gjenopptakelse | 430,682 | 1,501 | 286 |
| maalfrid_nfi | 430,469 | 1,557 | 276 |
| maalfrid_nidsenter | 416,329 | 1,657 | 251 |
| maalfrid_nasjonalmuseet | 396,739 | 1,106 | 358 |
| maalfrid_forbrukertilsynet | 395,317 | 1,252 | 315 |
| maalfrid_natursekken | 389,147 | 3,657 | 106 |
| maalfrid_fordelingsutvalget | 362,923 | 1,416 | 256 |
| maalfrid_digdir | 358,558 | 2,159 | 166 |
| maalfrid_forsvaret | 339,218 | 1,243 | 272 |
| maalfrid_beccle | 337,729 | 1,554 | 217 |
| maalfrid_romsenter | 335,107 | 1,154 | 290 |
| maalfrid_geonorge | 306,914 | 1,658 | 185 |
| maalfrid_universell | 269,369 | 2,206 | 122 |
| maalfrid_ovf | 267,941 | 950 | 282 |
| maalfrid_forbrukereuropa | 264,366 | 1,043 | 253 |
| maalfrid_politihogskolen | 264,192 | 1,253 | 210 |
| maalfrid_vinmonopolet | 250,998 | 689 | 364 |
| maalfrid_energimerking | 243,288 | 1,061 | 229 |
| maalfrid_ombudsmann | 235,226 | 432 | 544 |
| maalfrid_vea-fs | 231,109 | 1,293 | 178 |
| maalfrid_traumebevisst | 228,320 | 2,482 | 91 |
| maalfrid_npe | 208,768 | 1,018 | 205 |
| maalfrid_pkh | 206,925 | 814 | 254 |
| maalfrid_opplaringslovutvalget | 198,545 | 561 | 353 |
| maalfrid_helfo | 197,334 | 1,005 | 196 |
| maalfrid_regionaleforskningsfond | 191,416 | 1,010 | 189 |
| maalfrid_nafkam | 180,622 | 582 | 310 |
| maalfrid_jernbanemagasinet | 178,723 | 422 | 423 |
| maalfrid_polarhistorie | 176,126 | 393 | 448 |
| maalfrid_aasentunet | 165,549 | 543 | 304 |
| maalfrid_riksteatret | 161,970 | 809 | 200 |
| maalfrid_realfagsloyper | 160,310 | 765 | 209 |
| maalfrid_koro | 156,518 | 584 | 268 |
| maalfrid_squarespace | 149,259 | 515 | 289 |
| maalfrid_politietssikkerhetstjeneste | 146,346 | 478 | 306 |
| maalfrid_unknown | 142,298 | 715 | 199 |
| maalfrid_whocc | 122,839 | 664 | 184 |
| maalfrid_konfliktraadet | 122,030 | 379 | 321 |
| maalfrid_okokrim | 119,794 | 381 | 314 |
| maalfrid_brreg | 115,114 | 583 | 197 |
| maalfrid_riksmekleren | 113,287 | 570 | 198 |
| maalfrid_sismo | 112,976 | 316 | 357 |
| maalfrid_akkreditert | 101,275 | 513 | 197 |
| maalfrid_sivilforsvaret | 101,178 | 528 | 191 |
| maalfrid_radetfordyreetikk | 100,021 | 446 | 224 |
| maalfrid_lanekassen | 97,196 | 309 | 314 |
| maalfrid_digidel | 96,967 | 621 | 156 |
| maalfrid_uit | 92,451 | 612 | 151 |
| maalfrid_generaladvokaten | 91,998 | 297 | 309 |
| maalfrid_nyinorge | 90,938 | 204 | 445 |
| maalfrid_lokforerskolen | 90,255 | 478 | 188 |
| maalfrid_varsom | 87,050 | 576 | 151 |
| maalfrid_ffi | 82,147 | 224 | 366 |
| maalfrid_kulturminnefondet | 81,683 | 424 | 192 |
| maalfrid_unesco | 78,677 | 388 | 202 |
| maalfrid_yrkesfisker | 76,760 | 512 | 149 |
| maalfrid_dekom | 74,066 | 1,331 | 55 |
| maalfrid_omsorgsforskning | 73,528 | 332 | 221 |
| maalfrid_lektor2 | 70,477 | 561 | 125 |
| maalfrid_openaccess | 65,385 | 197 | 331 |
| maalfrid_ssn | 64,111 | 308 | 208 |
| maalfrid_lokalhistorie | 61,885 | 250 | 247 |
| maalfrid_laudim | 59,669 | 402 | 148 |
| maalfrid_nlb | 58,927 | 206 | 286 |
| maalfrid_riksadvokaten | 57,938 | 156 | 371 |
| maalfrid_denkulturelleskolesekken | 46,768 | 248 | 188 |
| maalfrid_sivilrett | 45,214 | 145 | 311 |
| maalfrid_htu | 43,778 | 171 | 256 |
| maalfrid_yr | 41,565 | 575 | 72 |
| maalfrid_informasjonskompetanse | 40,989 | 334 | 122 |
| maalfrid_finansportalen | 40,333 | 187 | 215 |
| maalfrid_dep | 38,882 | 126 | 308 |
| maalfrid_kulturped | 37,718 | 99 | 380 |
| maalfrid_feide | 37,583 | 274 | 137 |
| maalfrid_fug | 35,253 | 123 | 286 |
| maalfrid_kulturoghelse | 34,762 | 189 | 183 |
| maalfrid_helseklage | 33,612 | 127 | 264 |
| maalfrid_nbsk | 31,334 | 215 | 145 |
| maalfrid_matogindustri | 31,232 | 207 | 150 |
| maalfrid_sinn | 28,114 | 154 | 182 |
| maalfrid_transport21 | 25,691 | 91 | 282 |
| maalfrid_vergemal | 24,189 | 80 | 302 |
| maalfrid_konkursradet | 24,072 | 78 | 308 |
| maalfrid_norec | 22,496 | 78 | 288 |
| maalfrid_pts | 21,346 | 81 | 263 |
| maalfrid_nasjonaleturistveger | 20,237 | 111 | 182 |
| maalfrid_hjelpelinjen | 19,476 | 86 | 226 |
| maalfrid_iearth | 19,418 | 150 | 129 |
| maalfrid_russamtalen | 19,035 | 69 | 275 |
| maalfrid_xn--kvinneligomskjring-1ub | 18,607 | 79 | 235 |
| maalfrid_memu | 17,820 | 101 | 176 |
| maalfrid_nynorskbok | 17,769 | 98 | 181 |
| maalfrid_regjeringsadvokaten | 17,416 | 55 | 316 |
| maalfrid_xn--forskerfr-t8a | 16,827 | 177 | 95 |
| maalfrid_xn--tilbakefring-2jb | 15,814 | 49 | 322 |
| maalfrid_ringerikefengsel | 15,669 | 28 | 559 |
| maalfrid_skattefunn | 15,625 | 54 | 289 |
| maalfrid_skeivtarkiv | 15,537 | 69 | 225 |
| maalfrid_fordelingsutvalet | 15,473 | 35 | 442 |
| maalfrid_samfunnskunnskap | 15,110 | 60 | 251 |
| maalfrid_shiprep | 14,632 | 146 | 100 |
| maalfrid_sevuppt | 14,087 | 55 | 256 |
| maalfrid_haldenfengsel | 13,655 | 38 | 359 |
| maalfrid_forbrukerklageutvalget | 13,472 | 51 | 264 |
| maalfrid_mhfa | 12,591 | 146 | 86 |
| maalfrid_ah | 11,787 | 36 | 327 |
| maalfrid_nettvett | 11,353 | 44 | 258 |
| maalfrid_uh-it | 11,158 | 281 | 39 |
| maalfrid_fishgen | 10,318 | 29 | 355 |
| maalfrid_designavgang | 10,164 | 75 | 135 |
| maalfrid_global | 9,363 | 43 | 217 |
| maalfrid_valg | 8,797 | 48 | 183 |
| maalfrid_havmiljo | 8,734 | 69 | 126 |
| maalfrid_altinn | 7,945 | 50 | 158 |
| maalfrid_miljoklagenemnda | 7,797 | 35 | 222 |
| maalfrid_spinn-inn | 7,699 | 48 | 160 |
| maalfrid_kantinekurset | 7,397 | 54 | 136 |
| maalfrid_bastoyfengsel | 7,142 | 56 | 127 |
| maalfrid_norskpetroleum | 6,107 | 120 | 50 |
| maalfrid_voldsoffererstatning | 6,079 | 27 | 225 |
| maalfrid_musikkbasertmiljobehandling | 5,186 | 39 | 132 |
| maalfrid_prosjektveiviseren | 5,154 | 15 | 343 |
| maalfrid_aldersvennlig | 4,919 | 32 | 153 |
| maalfrid_barentswatch | 4,829 | 32 | 150 |
| maalfrid_fmfiavo@fylkesmannen | 4,740 | 69 | 68 |
| maalfrid_kk-utvalget | 4,697 | 19 | 247 |
| maalfrid_agropub | 4,434 | 17 | 260 |
| maalfrid_utdanningiverden | 4,369 | 14 | 312 |
| maalfrid_overgangsbolig | 3,862 | 36 | 107 |
| maalfrid_forsvaretsmuseer | 3,840 | 35 | 109 |
| maalfrid_okopark | 3,282 | 12 | 273 |
| maalfrid_pst | 2,866 | 14 | 204 |
| maalfrid_sikkerhverdag | 2,786 | 19 | 146 |
| maalfrid_arkitektur | 2,436 | 15 | 162 |
| maalfrid_velgekte | 2,287 | 10 | 228 |
| maalfrid_addlab | 2,109 | 12 | 175 |
| maalfrid_romerikefengsel | 2,088 | 19 | 109 |
| maalfrid_utdanning | 2,009 | 12 | 167 |
| maalfrid_grunderskolen | 1,994 | 7 | 284 |
| maalfrid_umb | 1,958 | 9 | 217 |
| maalfrid_oslofengsel | 1,756 | 8 | 219 |
| maalfrid_hjorteviltregisteret | 1,600 | 5 | 320 |
| maalfrid_alleteller | 1,511 | 7 | 215 |
| maalfrid_webhuset | 1,409 | 5 | 281 |
| maalfrid_lykillinn | 1,349 | 4 | 337 |
| maalfrid_kulturfag | 1,215 | 6 | 202 |
| maalfrid_unimus | 940 | 4 | 235 |
| maalfrid_anleggsregisteret | 928 | 5 | 185 |
| maalfrid_mangfoldsprisen | 597 | 3 | 199 |
| maalfrid_algae2future | 456 | 8 | 57 |
| maalfrid_mammapresenterer | 447 | 2 | 223 |
| maalfrid_karriereveiledning | 391 | 27 | 14 |
| maalfrid_nodsms | 351 | 4 | 87 |
| maalfrid_kildekompasset | 302 | 1 | 302 |
| maalfrid_praksisfou | 297 | 1 | 297 |
| maalfrid_retttilaalese | 246 | 3 | 82 |
| maalfrid_indreostfoldfengsel | 215 | 3 | 71 |
| maalfrid_xn--kroppsvingsforskning-gcc | 205 | 2 | 102 |
| maalfrid_pahoyden | 154 | 1 | 154 |
| maalfrid_norren | 42 | 1 | 42 |
### Languages
| Language | Words | Documents | Words/Document |
|-----------:|--------------:|------------:|-----------------:|
| no | 2,899,156,476 | 5,551,136 | 522 |
| da | 944,104,161 | 293,767 | 3,213 |
| en | 476,390,897 | 1,466,330 | 324 |
| nn | 181,310,112 | 492,410 | 368 |
| fr | 50,297,424 | 107,935 | 465 |
| de | 27,015,612 | 63,782 | 423 |
| sv | 16,046,622 | 57,029 | 281 |
| es | 8,573,155 | 31,661 | 270 |
| fi | 4,792,837 | 16,471 | 290 |
| pt | 2,547,144 | 14,952 | 170 |
| oc | 2,170,769 | 4,988 | 435 |
| nl | 1,911,626 | 7,355 | 259 |
| zh | 1,495,995 | 7,797 | 191 |
| uk | 1,474,032 | 4,451 | 331 |
| ca | 1,390,667 | 3,664 | 379 |
| la | 1,282,405 | 531 | 2,415 |
| it | 1,280,422 | 6,903 | 185 |
| ru | 1,233,667 | 5,880 | 209 |
| et | 1,059,537 | 4,042 | 262 |
| cs | 935,395 | 4,363 | 214 |
| eu | 851,593 | 3,170 | 268 |
| pl | 775,420 | 5,240 | 147 |
| fa | 503,880 | 2,061 | 244 |
| ja | 350,838 | 3,597 | 97 |
| is | 311,519 | 1,004 | 310 |
| id | 223,591 | 1,297 | 172 |
| ar | 212,495 | 1,183 | 179 |
| hu | 192,959 | 1,378 | 140 |
| vi | 137,056 | 639 | 214 |
| so | 131,743 | 605 | 217 |
| el | 120,726 | 620 | 194 |
| hr | 111,859 | 513 | 218 |
| lv | 106,155 | 64 | 1,658 |
| sl | 94,417 | 706 | 133 |
| tr | 91,459 | 1,051 | 87 |
| ro | 80,974 | 446 | 181 |
| eo | 80,688 | 506 | 159 |
| lt | 67,977 | 581 | 117 |
| sr | 66,429 | 793 | 83 |
| gl | 65,922 | 594 | 110 |
| war | 56,846 | 235 | 241 |
| ko | 56,147 | 924 | 60 |
| th | 54,677 | 364 | 150 |
| am | 46,477 | 327 | 142 |
| ceb | 35,679 | 272 | 131 |
| ml | 35,503 | 153 | 232 |
| sq | 32,258 | 158 | 204 |
| tl | 31,094 | 164 | 189 |
| kk | 27,819 | 70 | 397 |
| mn | 21,540 | 22 | 979 |
| sw | 18,629 | 65 | 286 |
| pnb | 18,502 | 81 | 228 |
| sk | 17,642 | 198 | 89 |
| bg | 17,142 | 98 | 174 |
| gu | 16,973 | 13 | 1,305 |
| ur | 16,017 | 146 | 109 |
| sh | 15,007 | 130 | 115 |
| mk | 13,479 | 65 | 207 |
| ckb | 9,350 | 44 | 212 |
| ku | 9,058 | 54 | 167 |
| az | 8,003 | 51 | 156 |
| ast | 7,910 | 63 | 125 |
| uz | 6,883 | 35 | 196 |
| ta | 4,177 | 59 | 70 |
| ms | 3,817 | 126 | 30 |
| fy | 3,579 | 28 | 127 |
| hy | 3,478 | 34 | 102 |
| pa | 3,283 | 16 | 205 |
| hi | 2,812 | 41 | 68 |
| bo | 2,551 | 1 | 2,551 |
| ht | 2,534 | 11 | 230 |
| be | 2,479 | 44 | 56 |
| min | 2,155 | 7 | 307 |
| jv | 2,067 | 38 | 54 |
| cy | 1,993 | 42 | 47 |
| su | 1,845 | 24 | 76 |
| ps | 1,832 | 15 | 122 |
| als | 1,826 | 41 | 44 |
| bn | 1,799 | 21 | 85 |
| af | 1,706 | 21 | 81 |
| bs | 1,524 | 24 | 63 |
| nds | 1,492 | 88 | 16 |
| qu | 1,484 | 13 | 114 |
| my | 1,115 | 16 | 69 |
| ga | 972 | 27 | 36 |
| mt | 940 | 12 | 78 |
| si | 907 | 23 | 39 |
| te | 853 | 17 | 50 |
| ilo | 801 | 16 | 50 |
| km | 690 | 12 | 57 |
| io | 689 | 10 | 68 |
| tt | 675 | 20 | 33 |
| jbo | 621 | 27 | 23 |
| gn | 595 | 7 | 85 |
| as | 584 | 2 | 292 |
| ug | 581 | 6 | 96 |
| kv | 562 | 3 | 187 |
| br | 553 | 23 | 24 |
| kn | 531 | 19 | 27 |
| pam | 476 | 1 | 476 |
| he | 396 | 14 | 28 |
| kw | 329 | 5 | 65 |
| ka | 326 | 17 | 19 |
| vep | 309 | 15 | 20 |
| yo | 261 | 5 | 52 |
| ky | 232 | 11 | 21 |
| azb | 216 | 1 | 216 |
| ba | 203 | 5 | 40 |
| wa | 191 | 21 | 9 |
| gom | 164 | 9 | 18 |
| tg | 129 | 3 | 43 |
| ia | 125 | 11 | 11 |
| mr | 122 | 6 | 20 |
| lmo | 90 | 24 | 3 |
| pms | 75 | 10 | 7 |
| lb | 68 | 15 | 4 |
| rue | 67 | 2 | 33 |
| vec | 67 | 3 | 22 |
| ne | 51 | 5 | 10 |
| hsb | 51 | 2 | 25 |
| cbk | 46 | 2 | 23 |
| or | 44 | 2 | 22 |
| ie | 38 | 5 | 7 |
| tk | 36 | 4 | 9 |
| eml | 31 | 4 | 7 |
| bar | 31 | 3 | 10 |
| arz | 31 | 1 | 31 |
| sco | 30 | 1 | 30 |
| gd | 29 | 2 | 14 |
| li | 22 | 3 | 7 |
| lrc | 20 | 1 | 20 |
| diq | 20 | 2 | 10 |
| dsb | 19 | 1 | 19 |
| yue | 19 | 1 | 19 |
| os | 15 | 2 | 7 |
| nah | 14 | 2 | 7 |
| mg | 14 | 2 | 7 |
| wuu | 14 | 1 | 14 |
| sd | 14 | 1 | 14 |
| cv | 12 | 1 | 12 |
| scn | 9 | 2 | 4 |
| bh | 8 | 1 | 8 |
| bcl | 8 | 1 | 8 |
| new | 4 | 1 | 4 |
| ce | 4 | 1 | 4 |
| vo | 3 | 2 | 1 |
| gv | 3 | 1 | 3 |
| frr | 3 | 1 | 3 |
| mzn | 3 | 1 | 3 |
| lo | 2 | 1 | 2 |
### Publish Periode
| Decade | Words | Documents | Words/Document |
|---------:|--------------:|------------:|-----------------:|
| 2020 | 3,640,555,163 | 7,486,987 | 672 |
| 2010 | 49,596,905 | 206,107 | 2,383 |
| 2000 | 76,215,035 | 89,416 | 10,668 |
| 1990 | 122,831,827 | 29,979 | 69,912 |
| 1980 | 53,794,156 | 55,215 | 9,877 |
| 1970 | 33,995,516 | 55,533 | 6,593 |
| 1960 | 35,981,142 | 87,285 | 4,469 |
| 1950 | 40,527,060 | 113,384 | 3,597 |
| 1940 | 36,906,757 | 42,049 | 15,702 |
| 1930 | 36,535,860 | 716 | 507,173 |
| 1920 | 52,070,676 | 1,087 | 483,201 |
| 1910 | 63,920,279 | 1,255 | 501,227 |
| 1900 | 61,593,361 | 1,164 | 525,050 |
| 1890 | 88,616,464 | 1,814 | 485,506 |
| 1880 | 59,549,399 | 1,087 | 550,945 |
| 1870 | 26,541,488 | 634 | 406,854 |
| 1860 | 39,854,074 | 710 | 543,956 |
| 1850 | 55,078,195 | 864 | 635,165 |
| 1840 | 31,307,769 | 534 | 583,077 |
| 1830 | 18,377,415 | 374 | 479,400 |
| 1820 | 4,821,598 | 147 | 339,040 |
| 1810 | 1,013,747 | 58 | 130,214 |
### Discussion of Biases
Please refer to our papers.
### Dataset Curators
[Freddy Wetjen](mailto:[email protected]) and [Per Egil Kummervold](mailto:[email protected])
## License
Various licences applies to different parts of the corpus. Every document in the corpus has a tag telling what **"doc_type"** it belongs to. If you are unable to accept any of the licenses, you should filter out the **"doc_type"** with a conflicting license.
| Doc_type | License |
| :-------- | :------------- |
| government_nb, government_nn, parliament, publicreports, lovdata_cd_\*, maalfrid_\* | [NLOD 2.0](https://data.norge.no/nlod/en/2.0/)|
| newspapers_ocr, newspapers_pdf, books| [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)|
| newspapers_online_nb, newspapers_online_nn | [CC BY-NC 2.0](https://creativecommons.org/licenses/by-nc/2.0/)|
| opensubtitles, wikipedia | [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/)
|
### Citation Information
If you are using the corpus, please refer to the articles below:
```
@inproceedings{kummervold-etal-2022-norwegian-colossal,
title = {The {N}orwegian colossal corpus: A text corpus for training large {N}orwegian language models},
author = {Kummervold, Per E and
Wetjen, Freddy and
De la Rosa, Javier},
booktitle = {Proceedings of the Thirteenth Language Resources and Evaluation Conference (LREC)},
year = {2022},
address = {Marseille, France},
publisher = {European Language Resources Association},
url = {https://aclanthology.org/2022.lrec-1.410},
pages = {3852--3860},
abstract = {Norwegian has been one of many languages lacking sufficient available text to train quality language models. In an attempt to bridge this gap, we introduce the Norwegian Colossal Corpus (NCC), which comprises 49GB of clean Norwegian textual data containing over 7B words. The NCC is composed of different and varied sources, ranging from books and newspapers to government documents and public reports, showcasing the various uses of the Norwegian language in society. The corpus contains mainly Norwegian Bokmål and Norwegian Nynorsk. Each document in the corpus is tagged with metadata that enables the creation of sub-corpora for specific needs. Its structure makes it easy to combine with large web archives that for licensing reasons could not be distributed together with the NCC. By releasing this corpus openly to the public, we hope to foster the creation of both better Norwegian language models and multilingual language models with support for Norwegian.},
}
@inproceedings{kummervold-etal-2021-operationalizing,
title = {Operationalizing a National Digital Library: The Case for a {N}orwegian Transformer Model},
author = {Kummervold, Per E and
De la Rosa, Javier and
Wetjen, Freddy and
Brygfjeld, Svein Arne},
booktitle = {Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
year = {2021},
address = {Reykjavik, Iceland (Online)},
publisher = {Linköping University Electronic Press, Sweden},
url = {https://aclanthology.org/2021.nodalida-main.3},
pages = {20--29},
abstract = {In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library.
The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models
in several token and sequence classification tasks for both Norwegian Bokmål and Norwegian Nynorsk. Our model also improves the mBERT performance for other
languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore,
we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.},
}
``` |