Upload Pong-v4-expert-MCTS.py
Browse files- Pong-v4-expert-MCTS.py +94 -0
Pong-v4-expert-MCTS.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
|
| 5 |
+
_DESCRIPTION = """\
|
| 6 |
+
Data sampled from an efficient-zero policy in the pong environment. The MCTS hidden state is included in the dataset.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
_HOMEPAGE = "https://github.com/opendilab/DI-engine"
|
| 10 |
+
|
| 11 |
+
_LICENSE = "Apache-2.0"
|
| 12 |
+
|
| 13 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 14 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 15 |
+
_BASE_URL = "https://huggingface.co/datasets/OpenDILabCommunity/Pong-v4-expert-MCTS/resolve/main"
|
| 16 |
+
_URLS = {
|
| 17 |
+
"Pong-v4-expert-MCTS": f"{_BASE_URL}/Pong-v4-expert-MCTS.pkl",
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class DecisionTransformerGymDataset(datasets.GeneratorBasedBuilder):
|
| 22 |
+
|
| 23 |
+
VERSION = datasets.Version("0.0.1")
|
| 24 |
+
|
| 25 |
+
# This is an example of a dataset with multiple configurations.
|
| 26 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
| 27 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 28 |
+
|
| 29 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
| 30 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 31 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 32 |
+
|
| 33 |
+
# You will be able to load one or the other configurations in the following list with
|
| 34 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 35 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 36 |
+
BUILDER_CONFIGS = [
|
| 37 |
+
datasets.BuilderConfig(
|
| 38 |
+
name="Pong-v4-expert-MCTS",
|
| 39 |
+
version=VERSION,
|
| 40 |
+
description="Data sampled from an efficient-zero policy in the pong environment",
|
| 41 |
+
)
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
def _info(self):
|
| 45 |
+
|
| 46 |
+
features = datasets.Features(
|
| 47 |
+
{
|
| 48 |
+
"observation": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("uint8")))),
|
| 49 |
+
"action": datasets.Sequence(datasets.Value("float32")),
|
| 50 |
+
"hidden_state": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))),
|
| 51 |
+
# These are the features of your dataset like images, labels ...
|
| 52 |
+
}
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
return datasets.DatasetInfo(
|
| 56 |
+
# This is the description that will appear on the datasets page.
|
| 57 |
+
description=_DESCRIPTION,
|
| 58 |
+
# This defines the different columns of the dataset and their types
|
| 59 |
+
# Here we define them above because they are different between the two configurations
|
| 60 |
+
features=features,
|
| 61 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 62 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 63 |
+
# supervised_keys=("sentence", "label"),
|
| 64 |
+
# Homepage of the dataset for documentation
|
| 65 |
+
homepage=_HOMEPAGE,
|
| 66 |
+
# License for the dataset if available
|
| 67 |
+
license=_LICENSE,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
def _split_generators(self, dl_manager):
|
| 71 |
+
urls = _URLS[self.config.name]
|
| 72 |
+
data_dir = dl_manager.download_and_extract(urls)
|
| 73 |
+
return [
|
| 74 |
+
datasets.SplitGenerator(
|
| 75 |
+
name=datasets.Split.TRAIN,
|
| 76 |
+
# These kwargs will be passed to _generate_examples
|
| 77 |
+
gen_kwargs={
|
| 78 |
+
"filepath": data_dir,
|
| 79 |
+
"split": "train",
|
| 80 |
+
},
|
| 81 |
+
)
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 85 |
+
def _generate_examples(self, filepath, split):
|
| 86 |
+
with open(filepath, "rb") as f:
|
| 87 |
+
data = pickle.load(f)
|
| 88 |
+
|
| 89 |
+
for idx in range(len(data['obs'])):
|
| 90 |
+
yield idx, {
|
| 91 |
+
'observation': data['obs'][idx],
|
| 92 |
+
'action': data['actions'][idx],
|
| 93 |
+
'hidden_state': data['hidden_state'][idx],
|
| 94 |
+
}
|