from fastapi import FastAPI, HTTPException, Response, Request from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from pydantic import BaseModel, Field from typing import Optional from vocify import generate_speech import os from slowapi import Limiter from slowapi.util import get_remote_address from slowapi.errors import RateLimitExceeded from fastapi.middleware.cors import CORSMiddleware # Create necessary directories if they don't exist os.makedirs("static", exist_ok=True) os.makedirs("templates", exist_ok=True) # Initialize FastAPI app app = FastAPI( title="Pyxilabs._.Vocify", description="A Text-to-Speech API", swagger_ui_parameters={"favicon": "/static/icon.png"} ) # Rate Limiter Setup limiter = Limiter(key_func=get_remote_address) app.state.limiter = limiter # Rate limit error handler @app.exception_handler(RateLimitExceeded) async def rate_limit_exceeded_handler(request: Request, exc: RateLimitExceeded): return HTTPException( status_code=429, detail="Rate limit exceeded. Please try again later." ) # Mount static files directory app.mount("/static", StaticFiles(directory="static"), name="static") # Initialize templates templates = Jinja2Templates(directory="templates") # Model and voice information structure MODEL_INFO = { "Pyx r1-voice": { "name": "Pyx r1-voice", "created": "2024-12-12", "owner": "Pyxilabs AI Studio", "voices": { "charlottee": "XB0fDUnXU5powFXDhCwa", "daniel": "onwK4e9ZLuTAKqWW03F9", "callum": "N2lVS1w4EtoT3dr4eOWO", "charlie": "IKne3meq5aSn9XLyUdCD", "clyde": "2EiwWnXFnvU5JabPnv8n", "dave": "CYw3kZ02Hs0563khs1Fj", "emily": "LcfcDJNUP1GQjkzn1xUU", "ethan": "g5CIjZEefAph4nQFvHAz", "fin": "D38z5RcWu1voky8WS1ja", "freya": "jsCqWAovK2LkecY7zXl4", "gigi": "jBpfuIE2acCO8z3wKNLl", "giovanni": "zcAOhNBS3c14rBihAFp1", "glinda": "z9fAnlkpzviPz146aGWa", "grace": "oWAxZDx7w5VEj9dCyTzz", "harry": "SOYHLrjzK2X1ezoPC6cr", "james": "ZQe5CZNOzWyzPSCn5a3c", "jeremy": "bVMeCyTHy58xNoL34h3p" } } } # Rate limits for free tier RATE_LIMITS = { "rpm": 10, # Requests per minute "rph": 100, # Requests per hour "rpd": 1000, # Requests per day } # Pydantic model for speech request class SpeechRequest(BaseModel): model: Optional[str] = Field(default="Pyx r1-voice") input: str = Field(..., max_length=5000) voice: str # Endpoint to generate speech @app.post("/v1/audio/speech") @app.get("/v1/audio/speech") @limiter.limit(f"{RATE_LIMITS['rpm']}/minute") @limiter.limit(f"{RATE_LIMITS['rph']}/hour") @limiter.limit(f"{RATE_LIMITS['rpd']}/day") async def create_speech(request: Request, speech_request: SpeechRequest): try: if speech_request.model != "Pyx r1-voice": raise HTTPException(status_code=400, detail="Invalid model. Only 'Pyx r1-voice' is supported.") if speech_request.voice not in MODEL_INFO["Pyx r1-voice"]["voices"]: raise HTTPException(status_code=400, detail="Invalid voice ID") voice_id = MODEL_INFO["Pyx r1-voice"]["voices"][speech_request.voice] result = generate_speech( model="eleven_multilingual_v2", voice=voice_id, input_text=speech_request.input ) if isinstance(result, list): raise HTTPException(status_code=result[0], detail=result[1]) return Response(content=result, media_type="audio/mpeg") except Exception as e: raise HTTPException(status_code=500, detail=str(e)) # Endpoint to get available models @app.get("/v1/models") async def get_models(): models_response = [] for model_id, model_data in MODEL_INFO.items(): model_info = { "id": model_id, "name": model_data["name"], "created": model_data["created"], "owner": model_data["owner"], "vocals": [ { "id": voice_name, } for voice_name, voice_id in model_data["voices"].items() ] } models_response.append(model_info) return {"models": models_response} # Root endpoint to serve the HTML frontend @app.get("/", response_class=HTMLResponse) async def root(request: Request): with open("templates/index.html", "r") as file: return HTMLResponse(content=file.read()) # Favicon endpoint @app.get("/favicon.ico", include_in_schema=False) async def favicon(): return {"url": "/static/icon.png"} # Run the application if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)