Commit
·
4a87d90
1
Parent(s):
fe440e6
feat: renaming output files and fixing a bug
Browse files- crag_sampler/sampler.py +18 -18
- crag_sampler/utils.py +56 -64
- examples/basic_sampling.py +18 -16
crag_sampler/sampler.py
CHANGED
|
@@ -13,8 +13,8 @@ import subprocess
|
|
| 13 |
from .utils import (
|
| 14 |
read_jsonl_fields_fast,
|
| 15 |
process_answer_types,
|
| 16 |
-
|
| 17 |
-
|
| 18 |
)
|
| 19 |
|
| 20 |
|
|
@@ -51,23 +51,23 @@ class CragSampler:
|
|
| 51 |
)
|
| 52 |
return process_answer_types(df)
|
| 53 |
|
| 54 |
-
def
|
| 55 |
self,
|
| 56 |
-
|
| 57 |
stratify_columns: Optional[List[str]] = None,
|
| 58 |
output_path: Optional[str] = None,
|
| 59 |
force_compute: bool = False,
|
| 60 |
) -> Dict:
|
| 61 |
-
"""Create stratified
|
| 62 |
|
| 63 |
Args:
|
| 64 |
-
|
| 65 |
stratify_columns: Columns to use for stratification. If None, uses defaults
|
| 66 |
output_path: Path to save/load the JSON output
|
| 67 |
-
force_compute: If True, always compute
|
| 68 |
|
| 69 |
Returns:
|
| 70 |
-
Dictionary containing the
|
| 71 |
"""
|
| 72 |
if stratify_columns is None:
|
| 73 |
stratify_columns = [
|
|
@@ -80,37 +80,37 @@ class CragSampler:
|
|
| 80 |
if output_path is None:
|
| 81 |
output_path = os.path.join(
|
| 82 |
os.path.dirname(self.input_file),
|
| 83 |
-
f"{os.path.splitext(os.path.basename(self.input_file))[0]}
|
| 84 |
)
|
| 85 |
|
| 86 |
-
return
|
| 87 |
self.df,
|
| 88 |
-
|
| 89 |
stratify_columns=stratify_columns,
|
| 90 |
output_path=output_path,
|
| 91 |
force_compute=force_compute,
|
| 92 |
)
|
| 93 |
|
| 94 |
-
def
|
| 95 |
self,
|
| 96 |
-
|
| 97 |
output_dir: Optional[str] = None,
|
| 98 |
compress: bool = True,
|
| 99 |
n_processes: Optional[int] = None,
|
| 100 |
overwrite: bool = False,
|
| 101 |
) -> None:
|
| 102 |
-
"""Write
|
| 103 |
|
| 104 |
Args:
|
| 105 |
-
|
| 106 |
-
output_dir: Directory to save
|
| 107 |
compress: Whether to compress output files with bz2
|
| 108 |
n_processes: Number of processes to use
|
| 109 |
overwrite: If False, skip existing output files
|
| 110 |
"""
|
| 111 |
-
|
| 112 |
self.input_file,
|
| 113 |
-
|
| 114 |
output_dir=output_dir,
|
| 115 |
compress=compress,
|
| 116 |
n_processes=n_processes,
|
|
|
|
| 13 |
from .utils import (
|
| 14 |
read_jsonl_fields_fast,
|
| 15 |
process_answer_types,
|
| 16 |
+
create_stratified_subsets,
|
| 17 |
+
subset_jsonl_file,
|
| 18 |
)
|
| 19 |
|
| 20 |
|
|
|
|
| 51 |
)
|
| 52 |
return process_answer_types(df)
|
| 53 |
|
| 54 |
+
def create_subsets(
|
| 55 |
self,
|
| 56 |
+
n_subsets: int = 5,
|
| 57 |
stratify_columns: Optional[List[str]] = None,
|
| 58 |
output_path: Optional[str] = None,
|
| 59 |
force_compute: bool = False,
|
| 60 |
) -> Dict:
|
| 61 |
+
"""Create stratified subsets of the dataset.
|
| 62 |
|
| 63 |
Args:
|
| 64 |
+
n_subsets: Number of subsets to create
|
| 65 |
stratify_columns: Columns to use for stratification. If None, uses defaults
|
| 66 |
output_path: Path to save/load the JSON output
|
| 67 |
+
force_compute: If True, always compute subsets even if file exists
|
| 68 |
|
| 69 |
Returns:
|
| 70 |
+
Dictionary containing the subsets information
|
| 71 |
"""
|
| 72 |
if stratify_columns is None:
|
| 73 |
stratify_columns = [
|
|
|
|
| 80 |
if output_path is None:
|
| 81 |
output_path = os.path.join(
|
| 82 |
os.path.dirname(self.input_file),
|
| 83 |
+
f"{os.path.splitext(os.path.basename(self.input_file))[0]}_subsets.json",
|
| 84 |
)
|
| 85 |
|
| 86 |
+
return create_stratified_subsets(
|
| 87 |
self.df,
|
| 88 |
+
n_subsets=n_subsets,
|
| 89 |
stratify_columns=stratify_columns,
|
| 90 |
output_path=output_path,
|
| 91 |
force_compute=force_compute,
|
| 92 |
)
|
| 93 |
|
| 94 |
+
def write_subsets(
|
| 95 |
self,
|
| 96 |
+
subsets_file: str,
|
| 97 |
output_dir: Optional[str] = None,
|
| 98 |
compress: bool = True,
|
| 99 |
n_processes: Optional[int] = None,
|
| 100 |
overwrite: bool = False,
|
| 101 |
) -> None:
|
| 102 |
+
"""Write subsets to separate files.
|
| 103 |
|
| 104 |
Args:
|
| 105 |
+
subsets_file: Path to JSON file containing subset indices
|
| 106 |
+
output_dir: Directory to save subset files
|
| 107 |
compress: Whether to compress output files with bz2
|
| 108 |
n_processes: Number of processes to use
|
| 109 |
overwrite: If False, skip existing output files
|
| 110 |
"""
|
| 111 |
+
subset_jsonl_file(
|
| 112 |
self.input_file,
|
| 113 |
+
subsets_file,
|
| 114 |
output_dir=output_dir,
|
| 115 |
compress=compress,
|
| 116 |
n_processes=n_processes,
|
crag_sampler/utils.py
CHANGED
|
@@ -167,82 +167,80 @@ def process_answer_types(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 167 |
return df
|
| 168 |
|
| 169 |
|
| 170 |
-
def
|
| 171 |
df: pd.DataFrame,
|
| 172 |
-
|
| 173 |
stratify_columns: List[str] = [
|
| 174 |
"domain",
|
| 175 |
"answer_type",
|
| 176 |
"question_type",
|
| 177 |
"static_or_dynamic",
|
| 178 |
],
|
| 179 |
-
output_path: str = "
|
| 180 |
force_compute: bool = False,
|
| 181 |
) -> Dict[str, Any]:
|
| 182 |
"""
|
| 183 |
-
Create stratified
|
| 184 |
-
Each
|
| 185 |
|
| 186 |
Args:
|
| 187 |
df: Input DataFrame
|
| 188 |
-
|
| 189 |
stratify_columns: Columns to use for stratification
|
| 190 |
output_path: Path to save/load the JSON output
|
| 191 |
-
force_compute: If True, always compute
|
| 192 |
|
| 193 |
Returns:
|
| 194 |
-
Dictionary containing the
|
| 195 |
"""
|
| 196 |
# Check if file exists and we can use it
|
| 197 |
if not force_compute and os.path.exists(output_path):
|
| 198 |
try:
|
| 199 |
with open(output_path, "r") as f:
|
| 200 |
-
|
| 201 |
|
| 202 |
# Validate the loaded data has the expected structure
|
| 203 |
if (
|
| 204 |
-
|
| 205 |
-
and
|
| 206 |
== stratify_columns
|
| 207 |
):
|
| 208 |
-
print(f"Loading existing
|
| 209 |
-
return
|
| 210 |
else:
|
| 211 |
-
print(
|
| 212 |
-
"Existing subsamples file has different parameters, recomputing..."
|
| 213 |
-
)
|
| 214 |
except Exception as e:
|
| 215 |
-
print(f"Error loading existing
|
| 216 |
|
| 217 |
# Create a combined category for stratification
|
| 218 |
df["strat_category"] = df[stratify_columns].astype(str).agg("_".join, axis=1)
|
| 219 |
|
| 220 |
-
# Initialize the
|
| 221 |
-
skf = StratifiedKFold(n_splits=
|
| 222 |
|
| 223 |
-
# Create
|
| 224 |
-
|
| 225 |
-
for
|
| 226 |
skf.split(df, df["strat_category"])
|
| 227 |
):
|
| 228 |
# Sort indices for consistent hashing
|
| 229 |
-
sorted_indices = sorted(
|
| 230 |
|
| 231 |
# Create a deterministic ID from the indices
|
| 232 |
-
|
| 233 |
|
| 234 |
-
# Calculate statistics for this
|
| 235 |
stats = {}
|
| 236 |
-
|
| 237 |
for col in stratify_columns:
|
| 238 |
-
stats[col] =
|
| 239 |
|
| 240 |
-
|
| 241 |
{
|
| 242 |
-
"
|
| 243 |
"statistics": stats,
|
| 244 |
"indices": sorted_indices,
|
| 245 |
-
"size": len(
|
| 246 |
}
|
| 247 |
)
|
| 248 |
|
|
@@ -253,12 +251,12 @@ def create_stratified_subsamples(
|
|
| 253 |
|
| 254 |
output_data = {
|
| 255 |
"metadata": {
|
| 256 |
-
"
|
| 257 |
"total_samples": len(df),
|
| 258 |
"stratify_columns": stratify_columns,
|
| 259 |
"global_statistics": global_stats,
|
| 260 |
},
|
| 261 |
-
"
|
| 262 |
}
|
| 263 |
|
| 264 |
# Save to JSON
|
|
@@ -268,11 +266,10 @@ def create_stratified_subsamples(
|
|
| 268 |
return output_data
|
| 269 |
|
| 270 |
|
| 271 |
-
def
|
| 272 |
input_file: str, indices: List[int], output_file: str, compress: bool = True
|
| 273 |
) -> None:
|
| 274 |
-
"""
|
| 275 |
-
Write a single subsample to a file using awk.
|
| 276 |
|
| 277 |
Args:
|
| 278 |
input_file: Path to input JSONL file
|
|
@@ -280,15 +277,10 @@ def write_subsample(
|
|
| 280 |
output_file: Path to output file
|
| 281 |
compress: Whether to compress output
|
| 282 |
"""
|
| 283 |
-
# Convert indices to
|
| 284 |
-
# NR is the current line number in awk
|
| 285 |
indices_set = set(i + 1 for i in indices) # Convert to 1-based indexing
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
# Create awk script with escaped curly braces
|
| 289 |
-
awk_script = (
|
| 290 |
-
f'BEGIN {{subsample("{indices_str}",a,","); for(i in a) n[a[i]];}} NR in n'
|
| 291 |
-
)
|
| 292 |
|
| 293 |
if input_file.endswith(".bz2"):
|
| 294 |
if compress:
|
|
@@ -301,7 +293,7 @@ def write_subsample(
|
|
| 301 |
else:
|
| 302 |
cmd = f"awk '{awk_script}' '{input_file}' > '{output_file}'"
|
| 303 |
|
| 304 |
-
print(f"Process {os.getpid()} - Starting
|
| 305 |
try:
|
| 306 |
result = subprocess.run(
|
| 307 |
cmd,
|
|
@@ -311,12 +303,12 @@ def write_subsample(
|
|
| 311 |
stdout=subprocess.PIPE,
|
| 312 |
text=True,
|
| 313 |
)
|
| 314 |
-
print(f"Process {os.getpid()} - Finished
|
| 315 |
|
| 316 |
-
# Verify the output file exists and has content
|
| 317 |
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
|
| 318 |
print(
|
| 319 |
-
f"Process {os.getpid()} - Successfully created {output_file}
|
|
|
|
| 320 |
)
|
| 321 |
else:
|
| 322 |
raise Exception(f"Output file {output_file} is empty or doesn't exist")
|
|
@@ -330,33 +322,33 @@ def write_subsample(
|
|
| 330 |
raise
|
| 331 |
|
| 332 |
|
| 333 |
-
def
|
| 334 |
input_file: str,
|
| 335 |
-
|
| 336 |
output_dir: Optional[str] = None,
|
| 337 |
compress: bool = True,
|
| 338 |
n_processes: Optional[int] = None,
|
| 339 |
overwrite: bool = False,
|
| 340 |
) -> None:
|
| 341 |
"""
|
| 342 |
-
|
| 343 |
|
| 344 |
Args:
|
| 345 |
input_file: Path to input JSONL file (can be bz2 compressed)
|
| 346 |
-
|
| 347 |
-
output_dir: Directory to save
|
| 348 |
compress: Whether to compress output files with bz2
|
| 349 |
-
n_processes: Number of processes to use (defaults to min(
|
| 350 |
overwrite: If False, skip existing output files (default: False)
|
| 351 |
"""
|
| 352 |
-
# Load
|
| 353 |
-
with open(
|
| 354 |
-
|
| 355 |
|
| 356 |
# Determine optimal number of processes
|
| 357 |
-
|
| 358 |
if n_processes is None:
|
| 359 |
-
n_processes = min(
|
| 360 |
|
| 361 |
if output_dir is None:
|
| 362 |
output_dir = os.path.dirname(input_file)
|
|
@@ -369,9 +361,9 @@ def subsample_jsonl_file(
|
|
| 369 |
# Prepare arguments for parallel processing
|
| 370 |
write_args = []
|
| 371 |
skipped_files = []
|
| 372 |
-
for
|
| 373 |
-
|
| 374 |
-
output_name = f"{base_name}
|
| 375 |
if compress:
|
| 376 |
output_name += ".bz2"
|
| 377 |
output_path = os.path.join(output_dir, output_name)
|
|
@@ -381,7 +373,7 @@ def subsample_jsonl_file(
|
|
| 381 |
skipped_files.append(output_path)
|
| 382 |
continue
|
| 383 |
|
| 384 |
-
write_args.append((input_file,
|
| 385 |
|
| 386 |
if skipped_files:
|
| 387 |
print(f"Skipping {len(skipped_files)} existing files:")
|
|
@@ -389,8 +381,8 @@ def subsample_jsonl_file(
|
|
| 389 |
print(f" - {file}")
|
| 390 |
|
| 391 |
if write_args:
|
| 392 |
-
print(f"Processing {len(write_args)}
|
| 393 |
with Pool(processes=n_processes) as pool:
|
| 394 |
-
pool.starmap(
|
| 395 |
else:
|
| 396 |
print("No files to process - all files exist and overwrite=False")
|
|
|
|
| 167 |
return df
|
| 168 |
|
| 169 |
|
| 170 |
+
def create_stratified_subsets(
|
| 171 |
df: pd.DataFrame,
|
| 172 |
+
n_subsets: int,
|
| 173 |
stratify_columns: List[str] = [
|
| 174 |
"domain",
|
| 175 |
"answer_type",
|
| 176 |
"question_type",
|
| 177 |
"static_or_dynamic",
|
| 178 |
],
|
| 179 |
+
output_path: str = "subsets.json",
|
| 180 |
force_compute: bool = False,
|
| 181 |
) -> Dict[str, Any]:
|
| 182 |
"""
|
| 183 |
+
Create stratified subsets of the dataset and save them to a JSON file.
|
| 184 |
+
Each subset gets a unique ID based on its indices.
|
| 185 |
|
| 186 |
Args:
|
| 187 |
df: Input DataFrame
|
| 188 |
+
n_subsets: Number of subsets to create
|
| 189 |
stratify_columns: Columns to use for stratification
|
| 190 |
output_path: Path to save/load the JSON output
|
| 191 |
+
force_compute: If True, always compute subsets even if file exists
|
| 192 |
|
| 193 |
Returns:
|
| 194 |
+
Dictionary containing the subsets information
|
| 195 |
"""
|
| 196 |
# Check if file exists and we can use it
|
| 197 |
if not force_compute and os.path.exists(output_path):
|
| 198 |
try:
|
| 199 |
with open(output_path, "r") as f:
|
| 200 |
+
subsets_data = json.load(f)
|
| 201 |
|
| 202 |
# Validate the loaded data has the expected structure
|
| 203 |
if (
|
| 204 |
+
subsets_data.get("metadata", {}).get("n_subsets") == n_subsets
|
| 205 |
+
and subsets_data.get("metadata", {}).get("stratify_columns")
|
| 206 |
== stratify_columns
|
| 207 |
):
|
| 208 |
+
print(f"Loading existing subsets from {output_path}")
|
| 209 |
+
return subsets_data
|
| 210 |
else:
|
| 211 |
+
print("Existing subsets file has different parameters, recomputing...")
|
|
|
|
|
|
|
| 212 |
except Exception as e:
|
| 213 |
+
print(f"Error loading existing subsets file: {e}, recomputing...")
|
| 214 |
|
| 215 |
# Create a combined category for stratification
|
| 216 |
df["strat_category"] = df[stratify_columns].astype(str).agg("_".join, axis=1)
|
| 217 |
|
| 218 |
+
# Initialize the subsetter
|
| 219 |
+
skf = StratifiedKFold(n_splits=n_subsets, shuffle=True, random_state=42)
|
| 220 |
|
| 221 |
+
# Create subsets
|
| 222 |
+
subsets_info = []
|
| 223 |
+
for subset_idx, (_, subset_indices) in enumerate(
|
| 224 |
skf.split(df, df["strat_category"])
|
| 225 |
):
|
| 226 |
# Sort indices for consistent hashing
|
| 227 |
+
sorted_indices = sorted(subset_indices.tolist())
|
| 228 |
|
| 229 |
# Create a deterministic ID from the indices
|
| 230 |
+
subset_id = hashlib.md5(str(sorted_indices).encode()).hexdigest()[:8]
|
| 231 |
|
| 232 |
+
# Calculate statistics for this subset
|
| 233 |
stats = {}
|
| 234 |
+
subset_df = df.iloc[subset_indices]
|
| 235 |
for col in stratify_columns:
|
| 236 |
+
stats[col] = subset_df[col].value_counts().to_dict()
|
| 237 |
|
| 238 |
+
subsets_info.append(
|
| 239 |
{
|
| 240 |
+
"index": subset_idx,
|
| 241 |
"statistics": stats,
|
| 242 |
"indices": sorted_indices,
|
| 243 |
+
"size": len(subset_indices),
|
| 244 |
}
|
| 245 |
)
|
| 246 |
|
|
|
|
| 251 |
|
| 252 |
output_data = {
|
| 253 |
"metadata": {
|
| 254 |
+
"n_subsets": n_subsets,
|
| 255 |
"total_samples": len(df),
|
| 256 |
"stratify_columns": stratify_columns,
|
| 257 |
"global_statistics": global_stats,
|
| 258 |
},
|
| 259 |
+
"subsets": subsets_info,
|
| 260 |
}
|
| 261 |
|
| 262 |
# Save to JSON
|
|
|
|
| 266 |
return output_data
|
| 267 |
|
| 268 |
|
| 269 |
+
def write_subset(
|
| 270 |
input_file: str, indices: List[int], output_file: str, compress: bool = True
|
| 271 |
) -> None:
|
| 272 |
+
"""Write a single subset to a file using awk.
|
|
|
|
| 273 |
|
| 274 |
Args:
|
| 275 |
input_file: Path to input JSONL file
|
|
|
|
| 277 |
output_file: Path to output file
|
| 278 |
compress: Whether to compress output
|
| 279 |
"""
|
| 280 |
+
# Convert indices to 1-based indexing and create NR condition
|
|
|
|
| 281 |
indices_set = set(i + 1 for i in indices) # Convert to 1-based indexing
|
| 282 |
+
nr_conditions = " || ".join(f"NR == {i}" for i in sorted(indices_set))
|
| 283 |
+
awk_script = f"{nr_conditions}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
if input_file.endswith(".bz2"):
|
| 286 |
if compress:
|
|
|
|
| 293 |
else:
|
| 294 |
cmd = f"awk '{awk_script}' '{input_file}' > '{output_file}'"
|
| 295 |
|
| 296 |
+
print(f"Process {os.getpid()} - Starting subset to {output_file}")
|
| 297 |
try:
|
| 298 |
result = subprocess.run(
|
| 299 |
cmd,
|
|
|
|
| 303 |
stdout=subprocess.PIPE,
|
| 304 |
text=True,
|
| 305 |
)
|
| 306 |
+
print(f"Process {os.getpid()} - Finished subset to {output_file}")
|
| 307 |
|
|
|
|
| 308 |
if os.path.exists(output_file) and os.path.getsize(output_file) > 0:
|
| 309 |
print(
|
| 310 |
+
f"Process {os.getpid()} - Successfully created {output_file} "
|
| 311 |
+
f"({os.path.getsize(output_file)} bytes)"
|
| 312 |
)
|
| 313 |
else:
|
| 314 |
raise Exception(f"Output file {output_file} is empty or doesn't exist")
|
|
|
|
| 322 |
raise
|
| 323 |
|
| 324 |
|
| 325 |
+
def subset_jsonl_file(
|
| 326 |
input_file: str,
|
| 327 |
+
subsets_file: str,
|
| 328 |
output_dir: Optional[str] = None,
|
| 329 |
compress: bool = True,
|
| 330 |
n_processes: Optional[int] = None,
|
| 331 |
overwrite: bool = False,
|
| 332 |
) -> None:
|
| 333 |
"""
|
| 334 |
+
subset a large JSONL file into multiple files using sed for maximum performance.
|
| 335 |
|
| 336 |
Args:
|
| 337 |
input_file: Path to input JSONL file (can be bz2 compressed)
|
| 338 |
+
subsets_file: Path to JSON file containing subset indices
|
| 339 |
+
output_dir: Directory to save subset files (defaults to input file directory)
|
| 340 |
compress: Whether to compress output files with bz2
|
| 341 |
+
n_processes: Number of processes to use (defaults to min(n_subsets, cpu_count))
|
| 342 |
overwrite: If False, skip existing output files (default: False)
|
| 343 |
"""
|
| 344 |
+
# Load subsets information
|
| 345 |
+
with open(subsets_file, "r") as f:
|
| 346 |
+
subsets_data = json.load(f)
|
| 347 |
|
| 348 |
# Determine optimal number of processes
|
| 349 |
+
n_subsets = len(subsets_data["subsets"])
|
| 350 |
if n_processes is None:
|
| 351 |
+
n_processes = min(n_subsets, cpu_count())
|
| 352 |
|
| 353 |
if output_dir is None:
|
| 354 |
output_dir = os.path.dirname(input_file)
|
|
|
|
| 361 |
# Prepare arguments for parallel processing
|
| 362 |
write_args = []
|
| 363 |
skipped_files = []
|
| 364 |
+
for subset in subsets_data["subsets"]:
|
| 365 |
+
subset_idx = subset["index"]
|
| 366 |
+
output_name = f"{base_name}_subset_{subset_idx+1}.jsonl"
|
| 367 |
if compress:
|
| 368 |
output_name += ".bz2"
|
| 369 |
output_path = os.path.join(output_dir, output_name)
|
|
|
|
| 373 |
skipped_files.append(output_path)
|
| 374 |
continue
|
| 375 |
|
| 376 |
+
write_args.append((input_file, subset["indices"], output_path, compress))
|
| 377 |
|
| 378 |
if skipped_files:
|
| 379 |
print(f"Skipping {len(skipped_files)} existing files:")
|
|
|
|
| 381 |
print(f" - {file}")
|
| 382 |
|
| 383 |
if write_args:
|
| 384 |
+
print(f"Processing {len(write_args)} subsets using {n_processes} processes")
|
| 385 |
with Pool(processes=n_processes) as pool:
|
| 386 |
+
pool.starmap(write_subset, write_args)
|
| 387 |
else:
|
| 388 |
print("No files to process - all files exist and overwrite=False")
|
examples/basic_sampling.py
CHANGED
|
@@ -7,7 +7,7 @@ import os
|
|
| 7 |
def run_crag_task_1_and_2(
|
| 8 |
file_path: str,
|
| 9 |
fields_to_extract: list[str] = None,
|
| 10 |
-
|
| 11 |
output_dir: str = None,
|
| 12 |
compress: bool = True,
|
| 13 |
n_processes: int = None,
|
|
@@ -18,7 +18,7 @@ def run_crag_task_1_and_2(
|
|
| 18 |
Args:
|
| 19 |
file_path: Path to input JSONL file
|
| 20 |
fields_to_extract: List of fields to extract from JSONL
|
| 21 |
-
|
| 22 |
output_dir: Directory for output files
|
| 23 |
compress: Whether to compress output files
|
| 24 |
n_processes: Number of processes for parallel processing
|
|
@@ -29,27 +29,25 @@ def run_crag_task_1_and_2(
|
|
| 29 |
input_file=file_path, required_fields=fields_to_extract, use_cache=True
|
| 30 |
)
|
| 31 |
|
| 32 |
-
# Create output path for
|
| 33 |
output_path = os.path.join(
|
| 34 |
os.path.dirname(file_path),
|
| 35 |
-
f"{os.path.splitext(os.path.basename(file_path))[0]}
|
| 36 |
)
|
| 37 |
|
| 38 |
-
# Create
|
| 39 |
-
|
| 40 |
-
n_subsamples=n_subsamples, output_path=output_path
|
| 41 |
-
)
|
| 42 |
|
| 43 |
# Print statistics
|
| 44 |
-
print(f"Created {
|
| 45 |
print("\nGlobal statistics:")
|
| 46 |
-
print(json.dumps(
|
| 47 |
-
print("\nFirst
|
| 48 |
-
print(json.dumps(
|
| 49 |
|
| 50 |
-
# Write
|
| 51 |
-
sampler.
|
| 52 |
-
|
| 53 |
output_dir=output_dir,
|
| 54 |
compress=compress,
|
| 55 |
n_processes=n_processes,
|
|
@@ -61,5 +59,9 @@ def run_crag_task_1_and_2(
|
|
| 61 |
if __name__ == "__main__":
|
| 62 |
file_path = "./local_data/crag_task_1_and_2_dev_v4.jsonl.bz2"
|
| 63 |
fields_to_extract = ["domain", "answer", "question_type", "static_or_dynamic"]
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
run_crag_task_1_and_2(
|
|
|
|
|
|
|
|
|
| 7 |
def run_crag_task_1_and_2(
|
| 8 |
file_path: str,
|
| 9 |
fields_to_extract: list[str] = None,
|
| 10 |
+
n_subsets: int = 5,
|
| 11 |
output_dir: str = None,
|
| 12 |
compress: bool = True,
|
| 13 |
n_processes: int = None,
|
|
|
|
| 18 |
Args:
|
| 19 |
file_path: Path to input JSONL file
|
| 20 |
fields_to_extract: List of fields to extract from JSONL
|
| 21 |
+
n_subsets: Number of subsets to create
|
| 22 |
output_dir: Directory for output files
|
| 23 |
compress: Whether to compress output files
|
| 24 |
n_processes: Number of processes for parallel processing
|
|
|
|
| 29 |
input_file=file_path, required_fields=fields_to_extract, use_cache=True
|
| 30 |
)
|
| 31 |
|
| 32 |
+
# Create output path for subsets
|
| 33 |
output_path = os.path.join(
|
| 34 |
os.path.dirname(file_path),
|
| 35 |
+
f"{os.path.splitext(os.path.basename(file_path))[0]}_subsets.json",
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# Create subsets
|
| 39 |
+
subsets_data = sampler.create_subsets(n_subsets=n_subsets, output_path=output_path)
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Print statistics
|
| 42 |
+
print(f"Created {subsets_data['metadata']['n_subsets']} subsets")
|
| 43 |
print("\nGlobal statistics:")
|
| 44 |
+
print(json.dumps(subsets_data["metadata"]["global_statistics"], indent=2))
|
| 45 |
+
print("\nFirst subset statistics:")
|
| 46 |
+
print(json.dumps(subsets_data["subsets"][0]["statistics"], indent=2))
|
| 47 |
|
| 48 |
+
# Write subsets to files
|
| 49 |
+
sampler.write_subsets(
|
| 50 |
+
subsets_file=output_path,
|
| 51 |
output_dir=output_dir,
|
| 52 |
compress=compress,
|
| 53 |
n_processes=n_processes,
|
|
|
|
| 59 |
if __name__ == "__main__":
|
| 60 |
file_path = "./local_data/crag_task_1_and_2_dev_v4.jsonl.bz2"
|
| 61 |
fields_to_extract = ["domain", "answer", "question_type", "static_or_dynamic"]
|
| 62 |
+
n_subsets = 20
|
| 63 |
+
output_dir = "./subset/crag_task_1_and_2"
|
| 64 |
|
| 65 |
+
run_crag_task_1_and_2(
|
| 66 |
+
file_path, fields_to_extract, n_subsets=n_subsets, overwrite=True
|
| 67 |
+
)
|