SayanoAI commited on
Commit
f24c047
·
verified ·
1 Parent(s): ad44d9d

Upload config.py

Browse files
Files changed (1) hide show
  1. musetalk/DWPose/config.py +257 -0
musetalk/DWPose/config.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #_base_ = ['../../../_base_/default_runtime.py']
2
+ _base_ = ['default_runtime.py']
3
+
4
+ # runtime
5
+ max_epochs = 270
6
+ stage2_num_epochs = 30
7
+ base_lr = 4e-3
8
+ train_batch_size = 32
9
+ val_batch_size = 32
10
+
11
+ train_cfg = dict(max_epochs=max_epochs, val_interval=10)
12
+ randomness = dict(seed=21)
13
+
14
+ # optimizer
15
+ optim_wrapper = dict(
16
+ type='OptimWrapper',
17
+ optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
18
+ paramwise_cfg=dict(
19
+ norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
20
+
21
+ # learning rate
22
+ param_scheduler = [
23
+ dict(
24
+ type='LinearLR',
25
+ start_factor=1.0e-5,
26
+ by_epoch=False,
27
+ begin=0,
28
+ end=1000),
29
+ dict(
30
+ # use cosine lr from 150 to 300 epoch
31
+ type='CosineAnnealingLR',
32
+ eta_min=base_lr * 0.05,
33
+ begin=max_epochs // 2,
34
+ end=max_epochs,
35
+ T_max=max_epochs // 2,
36
+ by_epoch=True,
37
+ convert_to_iter_based=True),
38
+ ]
39
+
40
+ # automatically scaling LR based on the actual training batch size
41
+ auto_scale_lr = dict(base_batch_size=512)
42
+
43
+ # codec settings
44
+ codec = dict(
45
+ type='SimCCLabel',
46
+ input_size=(288, 384),
47
+ sigma=(6., 6.93),
48
+ simcc_split_ratio=2.0,
49
+ normalize=False,
50
+ use_dark=False)
51
+
52
+ # model settings
53
+ model = dict(
54
+ type='TopdownPoseEstimator',
55
+ data_preprocessor=dict(
56
+ type='PoseDataPreprocessor',
57
+ mean=[123.675, 116.28, 103.53],
58
+ std=[58.395, 57.12, 57.375],
59
+ bgr_to_rgb=True),
60
+ backbone=dict(
61
+ _scope_='mmdet',
62
+ type='CSPNeXt',
63
+ arch='P5',
64
+ expand_ratio=0.5,
65
+ deepen_factor=1.,
66
+ widen_factor=1.,
67
+ out_indices=(4, ),
68
+ channel_attention=True,
69
+ norm_cfg=dict(type='SyncBN'),
70
+ act_cfg=dict(type='SiLU'),
71
+ init_cfg=dict(
72
+ type='Pretrained',
73
+ prefix='backbone.',
74
+ checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
75
+ 'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa: E501
76
+ )),
77
+ head=dict(
78
+ type='RTMCCHead',
79
+ in_channels=1024,
80
+ out_channels=133,
81
+ input_size=codec['input_size'],
82
+ in_featuremap_size=(9, 12),
83
+ simcc_split_ratio=codec['simcc_split_ratio'],
84
+ final_layer_kernel_size=7,
85
+ gau_cfg=dict(
86
+ hidden_dims=256,
87
+ s=128,
88
+ expansion_factor=2,
89
+ dropout_rate=0.,
90
+ drop_path=0.,
91
+ act_fn='SiLU',
92
+ use_rel_bias=False,
93
+ pos_enc=False),
94
+ loss=dict(
95
+ type='KLDiscretLoss',
96
+ use_target_weight=True,
97
+ beta=10.,
98
+ label_softmax=True),
99
+ decoder=codec),
100
+ test_cfg=dict(flip_test=True, ))
101
+
102
+ # base dataset settings
103
+ dataset_type = 'UBody2dDataset'
104
+ data_mode = 'topdown'
105
+ data_root = 'data/UBody/'
106
+
107
+ backend_args = dict(backend='local')
108
+
109
+ scenes = [
110
+ 'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',
111
+ 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',
112
+ 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'
113
+ ]
114
+
115
+ train_datasets = [
116
+ dict(
117
+ type='CocoWholeBodyDataset',
118
+ data_root='data/coco/',
119
+ data_mode=data_mode,
120
+ ann_file='annotations/coco_wholebody_train_v1.0.json',
121
+ data_prefix=dict(img='train2017/'),
122
+ pipeline=[])
123
+ ]
124
+
125
+ for scene in scenes:
126
+ train_dataset = dict(
127
+ type=dataset_type,
128
+ data_root=data_root,
129
+ data_mode=data_mode,
130
+ ann_file=f'annotations/{scene}/train_annotations.json',
131
+ data_prefix=dict(img='images/'),
132
+ pipeline=[],
133
+ sample_interval=10)
134
+ train_datasets.append(train_dataset)
135
+
136
+ # pipelines
137
+ train_pipeline = [
138
+ dict(type='LoadImage', backend_args=backend_args),
139
+ dict(type='GetBBoxCenterScale'),
140
+ dict(type='RandomFlip', direction='horizontal'),
141
+ dict(type='RandomHalfBody'),
142
+ dict(
143
+ type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90),
144
+ dict(type='TopdownAffine', input_size=codec['input_size']),
145
+ dict(type='mmdet.YOLOXHSVRandomAug'),
146
+ dict(
147
+ type='Albumentation',
148
+ transforms=[
149
+ dict(type='Blur', p=0.1),
150
+ dict(type='MedianBlur', p=0.1),
151
+ dict(
152
+ type='CoarseDropout',
153
+ max_holes=1,
154
+ max_height=0.4,
155
+ max_width=0.4,
156
+ min_holes=1,
157
+ min_height=0.2,
158
+ min_width=0.2,
159
+ p=1.0),
160
+ ]),
161
+ dict(type='GenerateTarget', encoder=codec),
162
+ dict(type='PackPoseInputs')
163
+ ]
164
+ val_pipeline = [
165
+ dict(type='LoadImage', backend_args=backend_args),
166
+ dict(type='GetBBoxCenterScale'),
167
+ dict(type='TopdownAffine', input_size=codec['input_size']),
168
+ dict(type='PackPoseInputs')
169
+ ]
170
+
171
+ train_pipeline_stage2 = [
172
+ dict(type='LoadImage', backend_args=backend_args),
173
+ dict(type='GetBBoxCenterScale'),
174
+ dict(type='RandomFlip', direction='horizontal'),
175
+ dict(type='RandomHalfBody'),
176
+ dict(
177
+ type='RandomBBoxTransform',
178
+ shift_factor=0.,
179
+ scale_factor=[0.5, 1.5],
180
+ rotate_factor=90),
181
+ dict(type='TopdownAffine', input_size=codec['input_size']),
182
+ dict(type='mmdet.YOLOXHSVRandomAug'),
183
+ dict(
184
+ type='Albumentation',
185
+ transforms=[
186
+ dict(type='Blur', p=0.1),
187
+ dict(type='MedianBlur', p=0.1),
188
+ dict(
189
+ type='CoarseDropout',
190
+ max_holes=1,
191
+ max_height=0.4,
192
+ max_width=0.4,
193
+ min_holes=1,
194
+ min_height=0.2,
195
+ min_width=0.2,
196
+ p=0.5),
197
+ ]),
198
+ dict(type='GenerateTarget', encoder=codec),
199
+ dict(type='PackPoseInputs')
200
+ ]
201
+
202
+ # data loaders
203
+ train_dataloader = dict(
204
+ batch_size=train_batch_size,
205
+ num_workers=10,
206
+ persistent_workers=True,
207
+ sampler=dict(type='DefaultSampler', shuffle=True),
208
+ dataset=dict(
209
+ type='CombinedDataset',
210
+ metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
211
+ datasets=train_datasets,
212
+ pipeline=train_pipeline,
213
+ test_mode=False,
214
+ ))
215
+
216
+ val_dataloader = dict(
217
+ batch_size=val_batch_size,
218
+ num_workers=10,
219
+ persistent_workers=True,
220
+ drop_last=False,
221
+ sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
222
+ dataset=dict(
223
+ type='CocoWholeBodyDataset',
224
+ data_root=data_root,
225
+ data_mode=data_mode,
226
+ ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json',
227
+ bbox_file='data/coco/person_detection_results/'
228
+ 'COCO_val2017_detections_AP_H_56_person.json',
229
+ data_prefix=dict(img='coco/val2017/'),
230
+ test_mode=True,
231
+ pipeline=val_pipeline,
232
+ ))
233
+ test_dataloader = val_dataloader
234
+
235
+ # hooks
236
+ default_hooks = dict(
237
+ checkpoint=dict(
238
+ save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
239
+
240
+ custom_hooks = [
241
+ dict(
242
+ type='EMAHook',
243
+ ema_type='ExpMomentumEMA',
244
+ momentum=0.0002,
245
+ update_buffers=True,
246
+ priority=49),
247
+ dict(
248
+ type='mmdet.PipelineSwitchHook',
249
+ switch_epoch=max_epochs - stage2_num_epochs,
250
+ switch_pipeline=train_pipeline_stage2)
251
+ ]
252
+
253
+ # evaluators
254
+ val_evaluator = dict(
255
+ type='CocoWholeBodyMetric',
256
+ ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json')
257
+ test_evaluator = val_evaluator