tweet_eval_stance / tweet_eval_stance.py
nreimers's picture
update
568ea10
import json
import os
import datasets
_DESCRIPTION = "Tweet eval stance subset"
_SUBSETS = ["stance_abortion", "stance_atheism", "stance_climate", "stance_feminist", "stance_hillary"]
URL = "" #https://huggingface.co/datasets/SetFit/tweet_eval_stance/resolve/main/"
_URLs = {split: {"train": URL + f"{split}/train.jsonl", "test": URL + f"{split}/test.jsonl"} for split in _SUBSETS}
class TweetEval(datasets.GeneratorBasedBuilder):
"""TweetEval Dataset."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=name,
description=f"This part of my dataset covers {name} part of TweetEval Dataset.",
) for name in _SUBSETS
]
def _info(self):
names = ["none", "against", "favor"]
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.Value("int32"),
"label_text": datasets.Value("string"),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.name]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"text_path": data_dir["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"text_path": data_dir["test"]},
),
]
def _generate_examples(self, text_path):
"""Yields examples."""
with open(text_path, encoding="utf-8") as f:
texts = f.readlines()
for i, text in enumerate(texts):
yield i, json.loads(text)