File size: 5,055 Bytes
bdc6375 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# Epsilon-Transformers Belief Analysis Dataset
This dataset contains trained neural network models and their corresponding belief state regression analysis from the Epsilon-Transformers project. The models were trained on four different stochastic processes and analyzed for their ability to learn and represent belief states.
## Dataset Structure
```
epsilon-transformers-belief-analysis/
βββ README.md
βββ models/ # Model checkpoints and configurations from S3
β βββ {sweep_id}_{run_id}/
β β βββ 0.pt # Initial checkpoint
β β βββ {final}.pt # Final checkpoint
β β βββ run_config.yaml # Training configuration
β β βββ loss.csv # Training loss data
β βββ ...
βββ analysis/ # Belief state regression analysis results
βββ {sweep_id}_{run_id}/
β βββ checkpoint_0.joblib # Initial checkpoint analysis
β βββ checkpoint_{final}.joblib # Final checkpoint analysis
β βββ ground_truth_data.joblib # Neural network ground truth
β βββ markov3_checkpoint_*.joblib # Classical Markov comparisons
β βββ markov3_ground_truth_data.joblib # Classical ground truth
βββ ...
```
## Model Mappings
| Sweep ID | Run ID | Architecture | Process | Description |
|----------|--------|--------------|---------|-------------|
### Mess3
| 20241121152808 | 55 | LSTM | Mess3 | LSTM trained on Mess3 |
| 20241121152808 | 63 | GRU | Mess3 | GRU trained on Mess3 |
| 20241121152808 | 71 | RNN | Mess3 | RNN trained on Mess3 |
| 20241205175736 | 23 | Transformer | Mess3 | Transformer trained on Mess3 |
### FRDN
| 20241121152808 | 53 | LSTM | FRDN | LSTM trained on FRDN |
| 20241121152808 | 61 | GRU | FRDN | GRU trained on FRDN |
| 20241121152808 | 69 | RNN | FRDN | RNN trained on FRDN |
| 20250422023003 | 1 | Transformer | FRDN | Transformer trained on FRDN |
### Bloch Walk
| 20241121152808 | 49 | LSTM | Bloch Walk | LSTM trained on Bloch Walk |
| 20241121152808 | 57 | GRU | Bloch Walk | GRU trained on Bloch Walk |
| 20241121152808 | 65 | RNN | Bloch Walk | RNN trained on Bloch Walk |
| 20241205175736 | 17 | Transformer | Bloch Walk | Transformer trained on Bloch Walk |
### Moon Process
| 20241121152808 | 48 | LSTM | Moon Process | LSTM trained on Moon Process |
| 20241121152808 | 56 | GRU | Moon Process | GRU trained on Moon Process |
| 20241121152808 | 64 | RNN | Moon Process | RNN trained on Moon Process |
| 20250421221507 | 0 | Transformer | Moon Process | Transformer trained on Moon Process |
## Process Descriptions
### Mess3 (Classical Process)
A classical stochastic process used as a baseline for comparison with quantum processes.
### FRDN (Finite Random Dynamics Networks)
A quantum process representing finite random dynamics networks, modeling quantum systems with specific structural properties.
### Bloch Walk
A quantum random walk process on the Bloch sphere, representing quantum state evolution in a geometric framework.
### Moon Process
A post-quantum stochastic process that explores computational mechanics beyond standard quantum frameworks.
## Model Architectures
### RNN Models (LSTM, GRU, RNN)
- **Layers**: 4
- **Hidden Units**: 64
- **Direction**: Unidirectional
- **Configuration**: L4_H64_uni
### Transformer Models
- **Layers**: 4
- **Attention Heads**: 4
- **Head Dimension**: 16
- **Model Dimension**: 64
- **Configuration**: L4_H4_DH16_DM64
## File Formats
### Model Files (.pt)
PyTorch model checkpoints containing trained model weights and optimizer states.
### Analysis Files (.joblib)
Joblib-serialized files containing:
- **checkpoint_*.joblib**: Regression analysis results mapping activations to belief states
- **ground_truth_data.joblib**: True belief states and probabilities for the neural network data
- **markov3_*.joblib**: Classical Markov model comparisons and baselines
## Usage
### Loading Models
```python
import torch
from pathlib import Path
# Load a model checkpoint
model_path = Path("models/20241121152808_57/4075724800.pt")
checkpoint = torch.load(model_path, map_location='cpu')
```
### Loading Analysis Data
```python
import joblib
from pathlib import Path
# Load regression analysis results
analysis_path = Path("analysis/20241121152808_57/checkpoint_4075724800.joblib")
analysis_data = joblib.load(analysis_path)
# Access layer-wise regression metrics
for layer, metrics in analysis_data.items():
print(f"Layer {layer} RMSE: {metrics['rmse']}")
```
## Citation
If you use this dataset in your research, please cite:
```bibtex
@misc{epsilon-transformers-belief-analysis,
title={Epsilon-Transformers Belief Analysis Dataset},
author={[Your Name]},
year={2024},
howpublished={Hugging Face Datasets},
url={https://huggingface.co/datasets/[your-username]/epsilon-transformers-belief-analysis}
}
```
## License
[Specify your license here]
## Contact
[Your contact information]
|