adamimos commited on
Commit
2e48cbc
·
verified ·
1 Parent(s): e39fab2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -81
README.md CHANGED
@@ -17,6 +17,7 @@ size_categories:
17
  # Epsilon-Transformers Belief Analysis Dataset
18
 
19
  This dataset contains trained neural network models and their corresponding belief state regression analysis from the Epsilon-Transformers project. The models were trained on four different stochastic processes and analyzed for their ability to learn and represent belief states.
 
20
 
21
  ## Dataset Structure
22
 
@@ -61,92 +62,13 @@ epsilon-transformers-belief-analysis/
61
  | 20250421221507 | 0 | Transformer | Moon Process | Transformer trained on Moon Process |
62
  | 20250422023003 | 1 | Transformer | FRDN | Transformer trained on FRDN |
63
 
64
- ## Process Descriptions
65
-
66
- ### Mess3 (Classical Process)
67
- A classical stochastic process used as a baseline for comparison with quantum processes.
68
-
69
- ### FRDN (Finite Random Dynamics Networks)
70
- A quantum process representing finite random dynamics networks, modeling quantum systems with specific structural properties.
71
-
72
- ### Bloch Walk
73
- A quantum random walk process on the Bloch sphere, representing quantum state evolution in a geometric framework.
74
-
75
- ### Moon Process
76
- A post-quantum stochastic process that explores computational mechanics beyond standard quantum frameworks.
77
-
78
- ## Model Architectures
79
-
80
- ### RNN Models (LSTM, GRU, RNN)
81
- - **Layers**: 4
82
- - **Hidden Units**: 64
83
- - **Direction**: Unidirectional
84
- - **Configuration**: L4_H64_uni
85
-
86
- ### Transformer Models
87
- - **Layers**: 4
88
- - **Attention Heads**: 4
89
- - **Head Dimension**: 16
90
- - **Model Dimension**: 64
91
- - **Configuration**: L4_H4_DH16_DM64
92
-
93
  ## File Formats
94
 
95
  ### Model Files (.pt)
96
- PyTorch model checkpoints containing trained model weights and optimizer states.
97
 
98
  ### Analysis Files (.joblib)
99
  Joblib-serialized files containing:
100
  - **checkpoint_*.joblib**: Regression analysis results mapping activations to belief states
101
  - **ground_truth_data.joblib**: True belief states and probabilities for the neural network data
102
- - **markov3_*.joblib**: Classical Markov model comparisons and baselines
103
-
104
- ## Usage
105
-
106
- ### Loading Models
107
-
108
- ```python
109
- import torch
110
- from pathlib import Path
111
-
112
- # Load a model checkpoint
113
- model_path = Path("models/20241121152808_57/4075724800.pt")
114
- checkpoint = torch.load(model_path, map_location='cpu')
115
- ```
116
-
117
- ### Loading Analysis Data
118
-
119
- ```python
120
- import joblib
121
- from pathlib import Path
122
-
123
- # Load regression analysis results
124
- analysis_path = Path("analysis/20241121152808_57/checkpoint_4075724800.joblib")
125
- analysis_data = joblib.load(analysis_path)
126
-
127
- # Access layer-wise regression metrics
128
- for layer, metrics in analysis_data.items():
129
- print(f"Layer {layer} RMSE: {metrics['rmse']}")
130
- ```
131
-
132
- ## Citation
133
-
134
- If you use this dataset in your research, please cite:
135
-
136
- ```bibtex
137
- @misc{epsilon-transformers-belief-analysis,
138
- title={Epsilon-Transformers Belief Analysis Dataset},
139
- author={[Your Name]},
140
- year={2024},
141
- howpublished={Hugging Face Datasets},
142
- url={https://huggingface.co/datasets/[your-username]/epsilon-transformers-belief-analysis}
143
- }
144
- ```
145
-
146
- ## License
147
-
148
- [Specify your license here]
149
-
150
- ## Contact
151
-
152
- [Your contact information]
 
17
  # Epsilon-Transformers Belief Analysis Dataset
18
 
19
  This dataset contains trained neural network models and their corresponding belief state regression analysis from the Epsilon-Transformers project. The models were trained on four different stochastic processes and analyzed for their ability to learn and represent belief states.
20
+ See https://github.com/adamimos/epsilon-transformers/tree/quantum-public for codebase which generated this data.
21
 
22
  ## Dataset Structure
23
 
 
62
  | 20250421221507 | 0 | Transformer | Moon Process | Transformer trained on Moon Process |
63
  | 20250422023003 | 1 | Transformer | FRDN | Transformer trained on FRDN |
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  ## File Formats
66
 
67
  ### Model Files (.pt)
68
+ Transformerlens (for transformers) or Pytorch (for RNNs) model checkpoints containing trained model weights and optimizer states.
69
 
70
  ### Analysis Files (.joblib)
71
  Joblib-serialized files containing:
72
  - **checkpoint_*.joblib**: Regression analysis results mapping activations to belief states
73
  - **ground_truth_data.joblib**: True belief states and probabilities for the neural network data
74
+ - **markov3_*.joblib**: Classical Markov model comparisons and baselines