Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
taisazero commited on
Commit
c3315c6
·
1 Parent(s): e512c02

updated loader name:

Browse files
Files changed (1) hide show
  1. Shellcode_IA32.py +207 -0
Shellcode_IA32.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+ import pandas as pd
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @InProceedings{huggingface:dataset,
29
+ title = {A great new dataset},
30
+ author={huggingface, Inc.
31
+ },
32
+ year={2020}
33
+ }
34
+ """
35
+
36
+ # TODO: Add description of the dataset here
37
+ # You can copy an official description
38
+ _DESCRIPTION = """\
39
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
40
+ """
41
+
42
+ # TODO: Add a link to an official homepage for the dataset here
43
+ _HOMEPAGE = "https://github.com/dessertlab/Shellcode_IA32"
44
+
45
+ # TODO: Add the licence for the dataset here if you can find it
46
+ _LICENSE = "GNU GENERAL PUBLIC LICENSE"
47
+
48
+ # TODO: Add link to the official dataset URLs here
49
+ # The HuggingFace dataset library don't host the datasets but only point to the original files
50
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
51
+ _URLs = {
52
+ 'default': "https://raw.githubusercontent.com/dessertlab/Shellcode_IA32/main/Shellcode_IA32.tsv",
53
+ }
54
+
55
+
56
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
57
+ class Shellcode_IA32(datasets.GeneratorBasedBuilder):
58
+ """Shellcode_IA32 a dataset for shellcode generation"""
59
+
60
+ VERSION = datasets.Version("1.1.0")
61
+
62
+ # This is an example of a dataset with multiple configurations.
63
+ # If you don't want/need to define several sub-sets in your dataset,
64
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
65
+
66
+ # If you need to make complex sub-parts in the datasets with configurable options
67
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
68
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
69
+
70
+ # You will be able to load one or the other configurations in the following list with
71
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
72
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
73
+ BUILDER_CONFIGS = [
74
+ datasets.BuilderConfig(name="default", version=VERSION, description="This part of my dataset covers the default train/test split"),
75
+ #datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
76
+ ]
77
+
78
+ DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
79
+
80
+ def _info(self):
81
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
82
+
83
+ features = datasets.Features(
84
+ {
85
+ "intent": datasets.Value("string"),
86
+ "snippet": datasets.Value("string"),
87
+
88
+ }
89
+ )
90
+ return datasets.DatasetInfo(
91
+ # This is the description that will appear on the datasets page.
92
+ description=_DESCRIPTION,
93
+ # This defines the different columns of the dataset and their types
94
+ features=features, # Here we define them above because they are different between the two configurations
95
+ # If there's a common (input, target) tuple from the features,
96
+ # specify them here. They'll be used if as_supervised=True in
97
+ # builder.as_dataset.
98
+ supervised_keys=None,
99
+ # Homepage of the dataset for documentation
100
+ homepage=_HOMEPAGE,
101
+ # License for the dataset if available
102
+ license=_LICENSE,
103
+ # Citation for the dataset
104
+ citation=_CITATION,
105
+ )
106
+
107
+ def _split_generators(self, dl_manager):
108
+ """Returns SplitGenerators."""
109
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
110
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
111
+
112
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
113
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
114
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
115
+ my_urls = _URLs[self.config.name]
116
+ data_dir = dl_manager.download_and_extract(my_urls)
117
+ # return [
118
+ # datasets.SplitGenerator(
119
+ # name=datasets.Split.TRAIN,
120
+ # # These kwargs will be passed to _generate_examples
121
+ # gen_kwargs={
122
+ # "filepath": os.path.join(data_dir, "Shellcode_IA32.tsv"),
123
+ # "split": "train",
124
+ # },
125
+ # ),
126
+ # datasets.SplitGenerator(
127
+ # name=datasets.Split.TEST,
128
+ # # These kwargs will be passed to _generate_examples
129
+ # gen_kwargs={
130
+ # "filepath": os.path.join(data_dir, "Shellcode_IA32.tsv"),
131
+ # "split": "test"
132
+ # },
133
+ # ),
134
+ # datasets.SplitGenerator(
135
+ # name=datasets.Split.VALIDATION,
136
+ # # These kwargs will be passed to _generate_examples
137
+ # gen_kwargs={
138
+ # "filepath": os.path.join(data_dir, "Shellcode_IA32.tsv"),
139
+ # "split": "dev",
140
+ # },
141
+ # ),
142
+ # ]
143
+
144
+ return [
145
+ datasets.SplitGenerator(
146
+ name=datasets.Split.TRAIN,
147
+ # These kwargs will be passed to _generate_examples
148
+ gen_kwargs={
149
+ "filepath": os.path.join(data_dir),
150
+ "split": "train",
151
+ },
152
+ ),
153
+ datasets.SplitGenerator(
154
+ name=datasets.Split.TEST,
155
+ # These kwargs will be passed to _generate_examples
156
+ gen_kwargs={
157
+ "filepath": os.path.join(data_dir),
158
+ "split": "test"
159
+ },
160
+ ),
161
+ datasets.SplitGenerator(
162
+ name=datasets.Split.VALIDATION,
163
+ # These kwargs will be passed to _generate_examples
164
+ gen_kwargs={
165
+ "filepath": os.path.join(data_dir),
166
+ "split": "dev",
167
+ },
168
+ ),
169
+ ]
170
+
171
+ def _generate_examples(
172
+ self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
173
+ ):
174
+ """ Yields examples as (key, example) tuples. """
175
+ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
176
+ # The `key` is here for legacy reason (tfds) and is not important in itself.
177
+ """This function returns the examples in the raw (text) form."""
178
+
179
+ df = pd.read_csv(filepath, delimiter = '\t')
180
+ train = df.sample(frac = 0.8, random_state = 0)
181
+ test = df.drop(train.index)
182
+ dev = test.sample(frac = 0.5, random_state = 0)
183
+ test = test.drop(dev.index)
184
+
185
+ if split == 'train':
186
+ data = train
187
+ elif split == 'dev':
188
+ data = dev
189
+ elif split == 'test':
190
+ data = test
191
+
192
+ for idx, row in data.iterrows():
193
+ yield idx, {
194
+ "snippet": row["SNIPPETS"],
195
+ "intent": row["INTENTS"],
196
+
197
+ }
198
+ # with open(filepath, encoding="utf-8") as f:
199
+ # reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
200
+ # reader =
201
+ # for idx, row in enumerate(reader):
202
+ #
203
+ # yield idx, {
204
+ # "snippet": row["SNIPPETS"],
205
+ # "intent": row["INTENTS"],
206
+ #
207
+ # }