File size: 2,394 Bytes
ae41410 7b0629a ae41410 8abefbc 7b0629a 8abefbc 988aeff ae41410 988aeff ae41410 8abefbc c4aa90b 0e6dc0c 7b0629a ae41410 ea7b41d 0e6dc0c 988aeff 0e6dc0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import datasets
import os
import json
_DESCRIPTION = "lm-polygraph wrapper for xsum dataset"
_DATA_DIRECTORY = "."
VERSION = datasets.Version("0.0.1")
_CONFIG = {
"dataset": "xsum",
"splits": ["train", "validation", "test"],
"input_column": "document",
"output_column": "summary",
"prompt": "Here's the text and it's short one-sentence summary.\n\nText:\n{text}\n\nSummary (one sentence):\n",
}
def _prepare_dataset(dataset):
x, y = dataset[_CONFIG["input_column"]], dataset[_CONFIG["output_column"]]
if _CONFIG.get("prompt"):
for i in range(len(x)):
x[i] = _CONFIG["prompt"].format(text=x[i])
return x, y
class PolygraphXsum(datasets.GeneratorBasedBuilder):
"""lm-polygraph wrapper for xsum dataset"""
def _info(self):
features = datasets.Features(
{
"input": datasets.Value("string"),
"output": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
)
def _split_generators(self, dl_manager):
dataset = datasets.load_dataset(_CONFIG["dataset"], trust_remote_code=True)
def download_custom_dataset(src_url: str, dst_path: str):
split = src_url
x, y = _prepare_dataset(dataset[split])
result_dataset = datasets.Dataset.from_dict({"input": x, "output": y})
result_dataset.save_to_disk(dst_path)
downloaded_files = dl_manager.download_custom({split: split for split in _CONFIG["splits"]}, download_custom_dataset)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": downloaded_files["train"],
}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": downloaded_files["validation"],
}),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": downloaded_files["test"],
})
]
def _generate_examples(self, filepath):
dataset = datasets.Dataset.load_from_disk(filepath)
for i in range(len(dataset)):
yield i, dataset[i]
|