File size: 85,713 Bytes
2409b6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 |
year,day,part,question,answer,solution,language
2024,2,1,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?",341,"def parseInput():
input = []
with open('input.txt', 'r') as file:
tmp = file.read().splitlines()
tmp2 = [i.split(' ') for i in tmp]
for item in tmp2:
input.append([int(i) for i in item])
return input
if __name__ == ""__main__"":
input = parseInput()
safe = 0
for item in input:
tmpSafe = True
increasing = item[1] >= item[0]
for i in range(len(item) - 1):
diff = item[i + 1] - item[i]
if increasing and diff <= 0:
tmpSafe = False
break
if not increasing and diff >= 0:
tmpSafe = False
break
if 0 < abs(diff) > 3:
tmpSafe = False
break
if tmpSafe:
safe += 1
print(safe)
",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?",341,"import sys
input_path = sys.argv[1] if len(sys.argv) > 1 else ""input.txt""
def solve(input):
with open(input) as f:
lines = f.read().splitlines()
L = [list(map(int, line.split("" ""))) for line in lines]
# L = [[int(l) for l in line.split("" "")] for line in lines]
counter = 0
for l in L:
print(f""Evaluating {l}"")
skip = False
# decreasing
if l[0] > l[1]:
for i in range(len(l) - 1):
if l[i] - l[i + 1] > 3 or l[i] < l[i + 1] or l[i] == l[i + 1]:
skip = True
break
# increasing
elif l[0] < l[1]:
for i in range(len(l) - 1):
if l[i + 1] - l[i] > 3 or l[i] > l[i + 1] or l[i] == l[i + 1]:
skip = True
break
else:
continue
if skip:
continue
print(""Safe"")
counter += 1
print(counter)
solve(input_path)
",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?",341,"l = [list(map(int,x.split())) for x in open(""i.txt"")]
print(sum(any(all(d<b-a<u for a,b in zip(s,s[1:])) for d,u in[(0,4),(-4,0)])for s in l))",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?",341,"import sys
input_path = sys.argv[1] if len(sys.argv) > 1 else ""input.txt""
def solve(input):
with open(input) as f:
lines = f.read().splitlines()
L = [list(map(int, line.split("" ""))) for line in lines]
counter = 0
for l in L:
inc_dec = l == sorted(l) or l == sorted(l, reverse=True)
size_ok = True
for i in range(len(l) - 1):
if not 0 < abs(l[i] - l[i + 1]) <= 3:
size_ok = False
if inc_dec and size_ok:
counter += 1
print(counter)
solve(input_path)
",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?",341,"with open('input.txt', 'r') as file:
lines = file.readlines()
sum = 0
for line in lines:
A = [int(x) for x in line.split()]
ascending = False
valid = True
if A[0] < A[1]:
ascending = True
for i in range(len(A) - 1):
if ascending:
difference = A[i + 1] - A[i]
else:
difference = A[i] - A[i + 1]
if difference > 3 or difference <= 0:
valid = False
if valid:
sum += 1
print(sum)",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?
Your puzzle answer was 341.
--- Part Two ---
The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.
The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!
Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.
More of the above example's reports are now safe:
7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!
Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"def is_safe(levels: list[int]) -> bool:
# Calculate the difference between each report
differences = [first - second for first, second in zip(levels, levels[1:])]
max_difference = 3
return (all(0 < difference <= max_difference for difference in differences)
or all(-max_difference <= difference < 0 for difference in differences))
def part1():
with open(""input.txt"") as levels:
safe_reports = 0
for level in levels:
if is_safe(list(map(int, level.split()))):
safe_reports += 1
print(safe_reports)
def part2():
with open(""input.txt"") as levels:
safe_reports = 0
for level in levels:
level = list(map(int, level.split()))
for i in range(len(level)):
if is_safe(level[:i] + level[i + 1:]):
print(level[:i] + level[i + 1:])
safe_reports += 1
break
print(safe_reports)
part2()",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?
Your puzzle answer was 341.
--- Part Two ---
The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.
The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!
Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.
More of the above example's reports are now safe:
7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!
Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"def if_asc(x):
result = all(y < z for y,z in zip(x, x[1:]))
return result
def if_dsc(x):
result = all (y > z for y,z in zip(x, x[1:]))
return result
def if_asc_morethan3(x):
result = all(y > z - 4 for y,z in zip(x,x[1:]))
return result
def if_dsc_morethan3(x):
result = all(y < z + 4 for y, z in zip(x, x[1:]))
return result
input = [list(map(int,x.split("" ""))) for x in open(""input2.txt"", ""r"").read().splitlines()]
safe = 0
for x in input:
is_safe = 0
asc = if_asc(x)
dsc = if_dsc(x)
if asc:
asc3 = if_asc_morethan3(x)
if asc3:
safe +=1
is_safe +=1
if dsc:
dsc3 = if_dsc_morethan3(x)
if dsc3:
safe+=1
is_safe +=1
if is_safe == 0:
list_safe = 0
for i in range(len(x)):
list = x[:i] + x[i+1:]
list_asc = if_asc(list)
list_dsc = if_dsc(list)
if list_asc:
list_asc3 = if_asc_morethan3(list)
if list_asc3:
list_safe +=1
elif list_dsc:
list_dsc3 = if_dsc_morethan3(list)
if list_dsc3:
list_safe +=1
if list_safe > 0:
safe+=1
print (safe)",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?
Your puzzle answer was 341.
--- Part Two ---
The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.
The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!
Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.
More of the above example's reports are now safe:
7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!
Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"import sys
import logging
# logging.basicConfig(,level=sys.argv[2])
input_path = sys.argv[1] if len(sys.argv) > 1 else ""input.txt""
def is_ok(lst):
inc_dec = lst == sorted(lst) or lst == sorted(lst, reverse=True)
size_ok = True
for i in range(len(lst) - 1):
if not 0 < abs(lst[i] - lst[i + 1]) <= 3:
size_ok = False
if inc_dec and size_ok:
return True
def solve(input_path: str):
with open(input_path) as f:
lines = f.read().splitlines()
L = [list(map(int, line.split("" ""))) for line in lines]
counter = 0
for idx, l in enumerate(L):
logging.info(f""Evaluating {l}"")
logging.error(f""there was an error {idx}: {l}"")
if is_ok(l):
counter += 1
else:
for i in range(len(l)):
tmp = l.copy()
tmp.pop(i)
if is_ok(tmp):
counter += 1
break
print(counter)
solve(input_path)
",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?
Your puzzle answer was 341.
--- Part Two ---
The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.
The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!
Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.
More of the above example's reports are now safe:
7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!
Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"count = 0
def safe(levels):
# Check if the sequence is either all increasing or all decreasing
if all(levels[i] < levels[i + 1] for i in range(len(levels) - 1)): # Increasing
diffs = [levels[i + 1] - levels[i] for i in range(len(levels) - 1)]
elif all(levels[i] > levels[i + 1] for i in range(len(levels) - 1)): # Decreasing
diffs = [levels[i] - levels[i + 1] for i in range(len(levels) - 1)]
else:
return False # Mixed increasing and decreasing, not allowed
return all(1 <= x <= 3 for x in diffs) # Check if diffs are between 1 and 3
# Open and process the input file
with open('input.txt', 'r') as file:
for report in file:
levels = list(map(int, report.split()))
# Check if the report is safe without modification
if safe(levels):
count += 1
continue
# Try removing one level and check if the modified report is safe
for index in range(len(levels)):
modified_levels = levels[:index] + levels[index+1:]
if safe(modified_levels):
count += 1
break
print(count)
",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---
Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.
While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.
They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.
The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:
7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.
The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:
The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:
7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.
Analyze the unusual data from the engineers. How many reports are safe?
Your puzzle answer was 341.
--- Part Two ---
The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.
The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!
Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.
More of the above example's reports are now safe:
7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!
Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"def check_sequence(numbers):
nums = [int(x) for x in numbers.split()]
# First check if sequence is valid as is
if is_valid_sequence(nums):
return True
# Try removing one number at a time
for i in range(len(nums)):
test_nums = nums[:i] + nums[i+1:]
if is_valid_sequence(test_nums):
return True
return False
def is_valid_sequence(nums):
if len(nums) < 2:
return True
diffs = [nums[i+1] - nums[i] for i in range(len(nums)-1)]
# Check if all differences are within -3 to 3
if any(abs(d) > 3 for d in diffs):
return False
# Check if sequence is strictly increasing or decreasing
return all(d > 0 for d in diffs) or all(d < 0 for d in diffs)
# Read the file and count valid sequences
valid_count = 0
with open('02.input', 'r') as file:
for line in file:
line = line.strip()
if check_sequence(line):
print(line)
valid_count += 1
print(f""Number of valid sequences: {valid_count}"")
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def parseInput():
left = []
right = []
with open('input.txt', 'r') as file:
input = file.read().splitlines()
for line in input:
split = line.split("" "")
left.append(int(split[0]))
right.append(int(split[1]))
return left, right
def sort(arr: list):
for i in range(len(arr)):
for j in range(i, len(arr)):
if arr[j] < arr[i]:
arr[i], arr[j] = arr[j], arr[i]
return arr
if __name__ == ""__main__"":
left, right = parseInput()
left = sort(left)
right = sort(right)
# print(left)
# print(right)
sumDist = 0
for i in range(len(left)):
sumDist += left[i] - right[i] if left[i] > right[i] else right[i] - left[i]
print(sumDist)
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def find_min_diff(a, b):
sorted_a = sorted(a)
sorted_b = sorted(b)
d = 0
for i in range(len(sorted_a)):
d += abs(sorted_a[i] - sorted_b[i])
return d
def read_input_file(file_name):
a = []
b = []
with open(file_name, ""r"") as file:
for line in file:
values = line.strip().split()
if len(values) == 2:
a.append(int(values[0]))
b.append(int(values[1]))
return a, b
def main():
d = 0
a, b = read_input_file('input2.txt')
print(find_min_diff(a, b))
main()",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"input = open(""day_01\input.txt"", ""r"")
distance = 0
left_list = []
right_list = []
for line in input:
values = [x for x in line.strip().split()]
left_list += [int(values[0])]
right_list += [int(values[1])]
left_list.sort()
right_list.sort()
for i in range(len(left_list)):
distance += abs(left_list[i] - right_list[i])
print(f""The total distance between the lists is {distance}"")
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def read_input(file_path: str) -> list[tuple[int, int]]:
""""""
Reads a file and returns its contents as a list of tuples of integers.
Args:
file_path (str): The path to the input file.
Returns:
list of tuple of int: A list where each element is a tuple of integers
representing a line in the file.
""""""
with open(file_path) as f:
return [tuple(map(int, line.split())) for line in f]
def calculate_sum_of_differences(pairs: list[tuple[int, int]]) -> int:
""""""
Calculate the sum of absolute differences between corresponding elements
of two lists derived from pairs of numbers.
Args:
pairs (list of tuple): A list of tuples where each tuple contains two numbers.
Returns:
int: The sum of absolute differences between corresponding elements
of the two sorted lists derived from the input pairs.
""""""
list1, list2 = zip(*pairs)
list1, list2 = sorted(list1), sorted(list2)
return sum(abs(a - b) for a, b in zip(list1, list2))
if __name__ == ""__main__"":
input_file = 'input.txt'
pairs = read_input(input_file)
result = calculate_sum_of_differences(pairs)
print(result)
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"with open(""AdventOfCode D-1 input.txt"", ""r"") as file:
content = file.read()
lines = content.splitlines()
liste_1 = []
liste_2 = []
for i in range(len(lines)):
mots = lines[i].split()
liste_1.append(int(mots[0]))
liste_2.append(int(mots[1]))
liste_paires = []
index = 0
while liste_1 != []:
liste_paires.append([])
minimum1 = min(liste_1)
liste_paires[index].append(minimum1)
minimum2 = min(liste_2)
liste_paires[index].append(minimum2)
liste_1.remove(minimum1)
liste_2.remove(minimum2)
index += 1
total = 0
for i in range(len(liste_paires)):
total += abs(int(liste_paires[i][0]) - int(liste_paires[i][1]))
print(total)
#the answer was 3508942
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"def calculate_similarity_score(left, right):
score = 0
for left_element in left:
score += left_element * num_times_in_list(left_element, right)
return score
def num_times_in_list(number, right_list):
num_times = 0
for element in right_list:
if number == element:
num_times += 1
return num_times
def build_lists(contents):
left = []
right = []
for line in contents.split('\n'):
if line:
le, re = line.split()
left.append(int(le))
right.append(int(re))
return left, right
if __name__ == '__main__':
with open('1/day_1_input.txt', 'r') as f:
contents = f.read()
left, right = build_lists(contents)
score = calculate_similarity_score(left, right)
print(score)
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"leftNums, rightNums = [], []
with open('input.txt') as input:
while line := input.readline().strip():
left, right = line.split()
leftNums.append(int(left.strip()))
rightNums.append(int(right.strip()))
total = 0
for i in range(len(leftNums)):
total += leftNums[i] * rightNums.count(leftNums[i])
print(f""total: {total}"")",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"import re
import heapq
from collections import Counter
f = open('day1.txt', 'r')
list1 = []
list2 = []
for line in f:
splitLine = re.split(r""\s+"", line.strip())
list1.append(int(splitLine[0]))
list2.append(int(splitLine[1]))
list2Count = Counter(list2)
similarityScore = 0
for num in list1:
if num in list2Count:
similarityScore += num * list2Count[num]
print(similarityScore)
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"from collections import defaultdict
with open(""day_01.in"") as fin:
data = fin.read()
ans = 0
a = []
b = []
for line in data.strip().split(""\n""):
nums = [int(i) for i in line.split("" "")]
a.append(nums[0])
b.append(nums[1])
counts = defaultdict(int)
for x in b:
counts[x] += 1
for x in a:
ans += x * counts[x]
print(ans)
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"input = open(""Day 1\input.txt"", ""r"")
list1 = []
list2 = []
for line in input:
nums = line.split("" "")
list1.append(int(nums[0]))
list2.append(int(nums[-1]))
list1.sort()
list2.sort()
total = 0
for i in range(len(list1)):
num1 = list1[i]
simscore = 0
for j in range(len(list2)):
num2 = list2[j]
if num2 == num1:
simscore+=1
if num2 > num1:
break
total+= (num1*simscore)
print(total)",python:3.9
|