File size: 85,713 Bytes
2409b6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
year,day,part,question,answer,solution,language
2024,2,1,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?",341,"def parseInput():
    input = []

    with open('input.txt', 'r') as file:
        tmp = file.read().splitlines()
        tmp2 = [i.split(' ') for i in tmp]
        for item in tmp2:
            input.append([int(i) for i in item])
        
    return input

if __name__ == ""__main__"":
    input = parseInput()
    
    safe = 0
    for item in input:
        tmpSafe = True
        increasing = item[1] >= item[0]
        for i in range(len(item) - 1):
            diff = item[i + 1] - item[i]
            
            if increasing and diff <= 0:
                tmpSafe = False
                break

            if not increasing and diff >= 0:
                tmpSafe = False
                break

            if 0 < abs(diff) > 3:
                tmpSafe = False
                break
        if tmpSafe:
            safe += 1
    
    print(safe)
",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?",341,"import sys

input_path = sys.argv[1] if len(sys.argv) > 1 else ""input.txt""


def solve(input):
    with open(input) as f:
        lines = f.read().splitlines()
    L = [list(map(int, line.split("" ""))) for line in lines]
    # L = [[int(l) for l in line.split("" "")] for line in lines]
    counter = 0

    for l in L:
        print(f""Evaluating {l}"")
        skip = False
        # decreasing
        if l[0] > l[1]:
            for i in range(len(l) - 1):
                if l[i] - l[i + 1] > 3 or l[i] < l[i + 1] or l[i] == l[i + 1]:
                    skip = True
                    break
        # increasing
        elif l[0] < l[1]:
            for i in range(len(l) - 1):
                if l[i + 1] - l[i] > 3 or l[i] > l[i + 1] or l[i] == l[i + 1]:
                    skip = True
                    break
        else:
            continue
        if skip:
            continue
        print(""Safe"")
        counter += 1
    print(counter)


solve(input_path)
",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?",341,"l = [list(map(int,x.split())) for x in open(""i.txt"")]

print(sum(any(all(d<b-a<u for a,b in zip(s,s[1:])) for d,u in[(0,4),(-4,0)])for s in l))",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?",341,"import sys

input_path = sys.argv[1] if len(sys.argv) > 1 else ""input.txt""


def solve(input):
    with open(input) as f:
        lines = f.read().splitlines()
    L = [list(map(int, line.split("" ""))) for line in lines]
    counter = 0

    for l in L:
        inc_dec = l == sorted(l) or l == sorted(l, reverse=True)
        size_ok = True
        for i in range(len(l) - 1):
            if not 0 < abs(l[i] - l[i + 1]) <= 3:
                size_ok = False

        if inc_dec and size_ok:
            counter += 1
    print(counter)


solve(input_path)
",python:3.9
2024,2,1,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?",341,"with open('input.txt', 'r') as file:
    lines = file.readlines()
    sum = 0
    for line in lines:
        A = [int(x) for x in line.split()]
        ascending = False
        valid = True

        if A[0] < A[1]:
            ascending = True

        for i in range(len(A) - 1):
            if ascending:
                difference = A[i + 1] - A[i]
            else:
                difference = A[i] - A[i + 1]
            if difference > 3 or difference <= 0:
                valid = False
        
        if valid:
            sum += 1
    print(sum)",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?

Your puzzle answer was 341.

--- Part Two ---

The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.

The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!

Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.

More of the above example's reports are now safe:

7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!

Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"def is_safe(levels: list[int]) -> bool:
    # Calculate the difference between each report
    differences = [first - second for first, second in zip(levels, levels[1:])]

    max_difference = 3
    return (all(0 < difference <= max_difference for difference in differences)
            or all(-max_difference <= difference < 0 for difference in differences))

def part1():
    with open(""input.txt"") as levels:
        safe_reports = 0
        for level in levels:
            if is_safe(list(map(int, level.split()))):
                safe_reports += 1

    print(safe_reports)

def part2():
    with open(""input.txt"") as levels:
        safe_reports = 0
        for level in levels:
            level = list(map(int, level.split()))

            for i in range(len(level)):
                if is_safe(level[:i] + level[i + 1:]):
                    print(level[:i] + level[i + 1:])
                    safe_reports += 1
                    break

    print(safe_reports)



part2()",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?

Your puzzle answer was 341.

--- Part Two ---

The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.

The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!

Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.

More of the above example's reports are now safe:

7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!

Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"def if_asc(x):
    result = all(y < z for y,z in zip(x, x[1:]))
    return result

def if_dsc(x):
    result = all (y > z for y,z in zip(x, x[1:]))
    return result

def if_asc_morethan3(x):
    result = all(y > z - 4 for y,z in zip(x,x[1:]))
    return result

def if_dsc_morethan3(x):
    result = all(y < z + 4 for y, z in zip(x, x[1:]))
    return result

input = [list(map(int,x.split("" ""))) for x in open(""input2.txt"", ""r"").read().splitlines()]
safe = 0

for x in input:
    is_safe = 0
    asc = if_asc(x)
    dsc = if_dsc(x)

    if asc:
        asc3 = if_asc_morethan3(x)
        if asc3:
            safe +=1
            is_safe +=1

    if dsc:
        dsc3 = if_dsc_morethan3(x)
        if dsc3:
            safe+=1
            is_safe +=1

    if is_safe == 0:
        list_safe = 0
        for i in range(len(x)):
            list = x[:i] + x[i+1:]
            list_asc = if_asc(list)
            list_dsc = if_dsc(list)

            if list_asc:
                list_asc3 = if_asc_morethan3(list)
                if list_asc3:
                    list_safe +=1
            elif list_dsc:
                list_dsc3 = if_dsc_morethan3(list)
                if list_dsc3:
                    list_safe +=1
        if list_safe > 0:
            safe+=1

print (safe)",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?

Your puzzle answer was 341.

--- Part Two ---

The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.

The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!

Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.

More of the above example's reports are now safe:

7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!

Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"import sys
import logging

# logging.basicConfig(,level=sys.argv[2])

input_path = sys.argv[1] if len(sys.argv) > 1 else ""input.txt""


def is_ok(lst):
    inc_dec = lst == sorted(lst) or lst == sorted(lst, reverse=True)
    size_ok = True
    for i in range(len(lst) - 1):
        if not 0 < abs(lst[i] - lst[i + 1]) <= 3:
            size_ok = False

    if inc_dec and size_ok:
        return True


def solve(input_path: str):
    with open(input_path) as f:
        lines = f.read().splitlines()

    L = [list(map(int, line.split("" ""))) for line in lines]
    counter = 0
    for idx, l in enumerate(L):
        logging.info(f""Evaluating {l}"")
        logging.error(f""there was an error {idx}: {l}"")
        if is_ok(l):
            counter += 1
        else:
            for i in range(len(l)):
                tmp = l.copy()
                tmp.pop(i)
                if is_ok(tmp):
                    counter += 1
                    break
    print(counter)


solve(input_path)
",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?

Your puzzle answer was 341.

--- Part Two ---

The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.

The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!

Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.

More of the above example's reports are now safe:

7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!

Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"count = 0

def safe(levels):
    # Check if the sequence is either all increasing or all decreasing
    if all(levels[i] < levels[i + 1] for i in range(len(levels) - 1)):  # Increasing
        diffs = [levels[i + 1] - levels[i] for i in range(len(levels) - 1)]
    elif all(levels[i] > levels[i + 1] for i in range(len(levels) - 1)):  # Decreasing
        diffs = [levels[i] - levels[i + 1] for i in range(len(levels) - 1)]
    else:
        return False  # Mixed increasing and decreasing, not allowed
    
    return all(1 <= x <= 3 for x in diffs)  # Check if diffs are between 1 and 3

# Open and process the input file
with open('input.txt', 'r') as file:
    for report in file:
        levels = list(map(int, report.split()))

        # Check if the report is safe without modification
        if safe(levels):
            count += 1
            continue
        
        # Try removing one level and check if the modified report is safe
        for index in range(len(levels)):
            modified_levels = levels[:index] + levels[index+1:]
            if safe(modified_levels):
                count += 1
                break

print(count)
",python:3.9
2024,2,2,"--- Day 2: Red-Nosed Reports ---

Fortunately, the first location The Historians want to search isn't a long walk from the Chief Historian's office.

While the Red-Nosed Reindeer nuclear fusion/fission plant appears to contain no sign of the Chief Historian, the engineers there run up to you as soon as they see you. Apparently, they still talk about the time Rudolph was saved through molecular synthesis from a single electron.

They're quick to add that - since you're already here - they'd really appreciate your help analyzing some unusual data from the Red-Nosed reactor. You turn to check if The Historians are waiting for you, but they seem to have already divided into groups that are currently searching every corner of the facility. You offer to help with the unusual data.

The unusual data (your puzzle input) consists of many reports, one report per line. Each report is a list of numbers called levels that are separated by spaces. For example:

7 6 4 2 1
1 2 7 8 9
9 7 6 2 1
1 3 2 4 5
8 6 4 4 1
1 3 6 7 9
This example data contains six reports each containing five levels.

The engineers are trying to figure out which reports are safe. The Red-Nosed reactor safety systems can only tolerate levels that are either gradually increasing or gradually decreasing. So, a report only counts as safe if both of the following are true:

The levels are either all increasing or all decreasing.
Any two adjacent levels differ by at least one and at most three.
In the example above, the reports can be found safe or unsafe by checking those rules:

7 6 4 2 1: Safe because the levels are all decreasing by 1 or 2.
1 2 7 8 9: Unsafe because 2 7 is an increase of 5.
9 7 6 2 1: Unsafe because 6 2 is a decrease of 4.
1 3 2 4 5: Unsafe because 1 3 is increasing but 3 2 is decreasing.
8 6 4 4 1: Unsafe because 4 4 is neither an increase or a decrease.
1 3 6 7 9: Safe because the levels are all increasing by 1, 2, or 3.
So, in this example, 2 reports are safe.

Analyze the unusual data from the engineers. How many reports are safe?

Your puzzle answer was 341.

--- Part Two ---

The engineers are surprised by the low number of safe reports until they realize they forgot to tell you about the Problem Dampener.

The Problem Dampener is a reactor-mounted module that lets the reactor safety systems tolerate a single bad level in what would otherwise be a safe report. It's like the bad level never happened!

Now, the same rules apply as before, except if removing a single level from an unsafe report would make it safe, the report instead counts as safe.

More of the above example's reports are now safe:

7 6 4 2 1: Safe without removing any level.
1 2 7 8 9: Unsafe regardless of which level is removed.
9 7 6 2 1: Unsafe regardless of which level is removed.
1 3 2 4 5: Safe by removing the second level, 3.
8 6 4 4 1: Safe by removing the third level, 4.
1 3 6 7 9: Safe without removing any level.
Thanks to the Problem Dampener, 4 reports are actually safe!

Update your analysis by handling situations where the Problem Dampener can remove a single level from unsafe reports. How many reports are now safe?",404,"def check_sequence(numbers):
    nums = [int(x) for x in numbers.split()]
    
    # First check if sequence is valid as is
    if is_valid_sequence(nums):
        return True
        
    # Try removing one number at a time
    for i in range(len(nums)):
        test_nums = nums[:i] + nums[i+1:]
        if is_valid_sequence(test_nums):
            return True
            
    return False

def is_valid_sequence(nums):
    if len(nums) < 2:
        return True
        
    diffs = [nums[i+1] - nums[i] for i in range(len(nums)-1)]
    
    # Check if all differences are within -3 to 3
    if any(abs(d) > 3 for d in diffs):
        return False
        
    # Check if sequence is strictly increasing or decreasing
    return all(d > 0 for d in diffs) or all(d < 0 for d in diffs)

# Read the file and count valid sequences
valid_count = 0
with open('02.input', 'r') as file:
    for line in file:
        line = line.strip()
        if check_sequence(line):
            print(line)
            valid_count += 1

print(f""Number of valid sequences: {valid_count}"")
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def parseInput():
    left = []
    right = []

    with open('input.txt', 'r') as file:
        input = file.read().splitlines()
        for line in input:
            split = line.split(""   "")
            left.append(int(split[0]))
            right.append(int(split[1]))
    return left, right

def sort(arr: list):
    for i in range(len(arr)):
        for j in range(i, len(arr)):
            if arr[j] < arr[i]:
                arr[i], arr[j] = arr[j], arr[i]
    return arr

if __name__ == ""__main__"":
    left, right = parseInput()
    left = sort(left)
    right = sort(right)

    # print(left)
    # print(right)

    sumDist = 0
    for i in range(len(left)):
        sumDist += left[i] - right[i] if left[i] > right[i] else right[i] - left[i]
    print(sumDist)
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def find_min_diff(a, b):
    sorted_a = sorted(a)
    sorted_b = sorted(b)
    d = 0
    for i in range(len(sorted_a)):
        d += abs(sorted_a[i] - sorted_b[i])
    return d


def read_input_file(file_name):
    a = []
    b = []
    with open(file_name, ""r"") as file:
        for line in file:
            values = line.strip().split()
            if len(values) == 2:
                a.append(int(values[0]))
                b.append(int(values[1]))
    return a, b

def main():
    d = 0
    a, b = read_input_file('input2.txt')
    print(find_min_diff(a, b))

main()",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"input = open(""day_01\input.txt"", ""r"")

distance = 0
left_list = []
right_list = []

for line in input:
    values = [x for x in line.strip().split()]
    left_list += [int(values[0])]
    right_list += [int(values[1])]
    
left_list.sort()
right_list.sort()

for i in range(len(left_list)):
    distance += abs(left_list[i] - right_list[i])

print(f""The total distance between the lists is {distance}"")


",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def read_input(file_path: str) -> list[tuple[int, int]]:
    """"""
    Reads a file and returns its contents as a list of tuples of integers.

    Args:
        file_path (str): The path to the input file.

    Returns:
        list of tuple of int: A list where each element is a tuple of integers 
        representing a line in the file.
    """"""
    with open(file_path) as f:
        return [tuple(map(int, line.split())) for line in f]

def calculate_sum_of_differences(pairs: list[tuple[int, int]]) -> int:
    """"""
    Calculate the sum of absolute differences between corresponding elements 
    of two lists derived from pairs of numbers.

    Args:
        pairs (list of tuple): A list of tuples where each tuple contains two numbers.

    Returns:
        int: The sum of absolute differences between corresponding elements 
             of the two sorted lists derived from the input pairs.
    """"""
    list1, list2 = zip(*pairs)
    list1, list2 = sorted(list1), sorted(list2)
    return sum(abs(a - b) for a, b in zip(list1, list2))

if __name__ == ""__main__"":
    input_file = 'input.txt'
    pairs = read_input(input_file)
    result = calculate_sum_of_differences(pairs)
    print(result)
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"with open(""AdventOfCode D-1 input.txt"", ""r"") as file:
    content = file.read()
    lines = content.splitlines()

liste_1 = []
liste_2 = []
for i in range(len(lines)):
    mots = lines[i].split()
    liste_1.append(int(mots[0]))
    liste_2.append(int(mots[1]))

liste_paires = []
index = 0
while liste_1 != []:
    liste_paires.append([])
    minimum1 = min(liste_1)
    liste_paires[index].append(minimum1)
    minimum2 = min(liste_2)
    liste_paires[index].append(minimum2)
    liste_1.remove(minimum1)
    liste_2.remove(minimum2)
    index += 1

total = 0
for i in range(len(liste_paires)):
    total += abs(int(liste_paires[i][0]) - int(liste_paires[i][1]))
print(total)

#the answer was 3508942
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?

Your puzzle answer was 2378066.

--- Part Two ---

Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.

Or are they?

The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.

This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.

Here are the same example lists again:

3   4
4   3
2   5
1   3
3   9
3   3
For these example lists, here is the process of finding the similarity score:

The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).

Once again consider your left and right lists. What is their similarity score?",18934359,"def calculate_similarity_score(left, right):
    score = 0
    for left_element in left:
        score += left_element * num_times_in_list(left_element, right)
    return score

def num_times_in_list(number, right_list):
    num_times = 0
    for element in right_list:
        if number == element:
            num_times += 1
    return num_times

def build_lists(contents):
    left = []
    right = []

    for line in contents.split('\n'):
        if line:
            le, re = line.split()
            left.append(int(le))
            right.append(int(re))

    return left, right


if __name__ == '__main__':
    with open('1/day_1_input.txt', 'r') as f:
        contents = f.read()

    left, right = build_lists(contents)
    score = calculate_similarity_score(left, right)
    print(score)
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?

Your puzzle answer was 2378066.

--- Part Two ---

Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.

Or are they?

The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.

This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.

Here are the same example lists again:

3   4
4   3
2   5
1   3
3   9
3   3
For these example lists, here is the process of finding the similarity score:

The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).

Once again consider your left and right lists. What is their similarity score?",18934359,"leftNums, rightNums = [], []

with open('input.txt') as input:
    while line := input.readline().strip():
        left, right = line.split()
        leftNums.append(int(left.strip()))
        rightNums.append(int(right.strip()))

total = 0
for i in range(len(leftNums)):
    total += leftNums[i] * rightNums.count(leftNums[i])

print(f""total: {total}"")",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?

Your puzzle answer was 2378066.

--- Part Two ---

Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.

Or are they?

The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.

This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.

Here are the same example lists again:

3   4
4   3
2   5
1   3
3   9
3   3
For these example lists, here is the process of finding the similarity score:

The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).

Once again consider your left and right lists. What is their similarity score?",18934359,"import re
import heapq
from collections import Counter

f = open('day1.txt', 'r')

list1 = []
list2 = []
for line in f:
    splitLine = re.split(r""\s+"", line.strip())
    list1.append(int(splitLine[0]))
    list2.append(int(splitLine[1]))

list2Count = Counter(list2)

similarityScore = 0
for num in list1:
    if num in list2Count:
        similarityScore += num * list2Count[num]

print(similarityScore)
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?

Your puzzle answer was 2378066.

--- Part Two ---

Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.

Or are they?

The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.

This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.

Here are the same example lists again:

3   4
4   3
2   5
1   3
3   9
3   3
For these example lists, here is the process of finding the similarity score:

The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).

Once again consider your left and right lists. What is their similarity score?",18934359,"from collections import defaultdict

with open(""day_01.in"") as fin:
    data = fin.read()

ans = 0
a = []
b = []

for line in data.strip().split(""\n""):
    nums = [int(i) for i in line.split(""   "")]
    a.append(nums[0])
    b.append(nums[1])

counts = defaultdict(int)
for x in b:
    counts[x] += 1

for x in a:
    ans += x * counts[x]

print(ans)
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---

The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.

As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.

Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!

You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.

Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?

Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.

There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?

For example:

3   4
4   3
2   5
1   3
3   9
3   3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.

Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.

In the example list above, the pairs and distances would be as follows:

The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!

Your actual left and right lists contain many location IDs. What is the total distance between your lists?

Your puzzle answer was 2378066.

--- Part Two ---

Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.

Or are they?

The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.

This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.

Here are the same example lists again:

3   4
4   3
2   5
1   3
3   9
3   3
For these example lists, here is the process of finding the similarity score:

The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).

Once again consider your left and right lists. What is their similarity score?",18934359,"input = open(""Day 1\input.txt"", ""r"")
list1 = []
list2 = []
for line in input:
    nums = line.split("" "")
    list1.append(int(nums[0]))
    list2.append(int(nums[-1]))
list1.sort()
list2.sort()
total = 0
for i in range(len(list1)):
    num1 = list1[i]
    simscore = 0
    for j in range(len(list2)):
        num2 = list2[j]
        if num2 == num1:
            simscore+=1
        if num2 > num1:
            break
    total+= (num1*simscore)
print(total)",python:3.9