File size: 50,956 Bytes
b0fdcf6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 |
year,day,part,question,answer,solution,language
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def get_diff_sum(list1, list2):
list1.sort()
list2.sort()
return sum([abs(list1[i] - list2[i]) for i in range(len(list1))])
if __name__ == ""__main__"":
list1 = []
list2 = []
# Open file 'day1-1.txt' in read mode
with open('day1-1.txt', 'r') as f:
# Read each line of the file
for line in f:
nums = line.split()
list1.append(int(nums[0]))
list2.append(int(nums[1]))
result = get_diff_sum(list1, list2)
print(""Total Distance between lists: "" + str(result))",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"with open('input.txt') as f:
lines = f.read().splitlines()
nums = [[int(v) for v in line.split()] for line in lines]
left, right = map(sorted, map(list, zip(*nums)))
distance = sum([abs(left[i] - right[i]) for i in range(len(left))])
print(distance)",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"class Solution:
def add_input(self, col1: list[int], col2: list[int]) -> int:
i = 0
with open(""day1Input.txt"", 'r') as input:
for line in input:
line_split = line.split()
if len(line_split) == 2:
col1.append(int(line_split[0]))
col2.append(int(line_split[1]))
else:
print(f""Skipping invalid line: {line.strip()}"")
total_sum = 0
while col1 and col2:
min1 = min(col1)
min2 = min(col2)
diff = abs(min2 - min1)
total_sum += diff
col1.remove(min1)
col2.remove(min2)
return total_sum
# Create an instance of the Solution class
solution = Solution()
# Initialize the two lists where input data will be stored
col1 = []
col2 = []
# Print the results
print(""Final sum:"", solution.add_input(col1, col2))
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"def parseInput():
left = []
right = []
with open('input.txt', 'r') as file:
input = file.read().splitlines()
for line in input:
split = line.split("" "")
left.append(int(split[0]))
right.append(int(split[1]))
return left, right
def sort(arr: list):
for i in range(len(arr)):
for j in range(i, len(arr)):
if arr[j] < arr[i]:
arr[i], arr[j] = arr[j], arr[i]
return arr
if __name__ == ""__main__"":
left, right = parseInput()
left = sort(left)
right = sort(right)
# print(left)
# print(right)
sumDist = 0
for i in range(len(left)):
sumDist += left[i] - right[i] if left[i] > right[i] else right[i] - left[i]
print(sumDist)
",python:3.9
2024,1,1,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?",2378066,"with open('input_1.txt', 'r') as file:
lines = file.readlines()
col1nums = []
col2nums = []
for line in lines:
num1, num2 = map(int, line.split(' '))
col1nums.append(num1)
col2nums.append(num2)
col1nums.sort()
col2nums.sort()
sum = 0
for num1, num2 in zip(col1nums, col2nums):
sum += abs(num1 - num2)
print(sum)
# output: 2066446",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"from collections import Counter
array_1 = []
array_2 = []
input_file = 'input.txt'
with open(input_file, 'r') as file:
for line in file:
parts = line.strip().split(' ')
if len(parts) == 2:
array_1.append(int(parts[0]))
array_2.append(int(parts[1]))
array_2_count = Counter(array_2)
sum = 0
for num in array_1:
sum += num * array_2_count[num]
print(sum)",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"def distance(col1,col2):
tabdist = []
assert (len(col1)==len(col2))
for i in range(len(col1)):
tabdist.append(abs(col1[i])-col2[i])
return tabdist
def sim_score(col1,col2):
tabscore = []
similarity_score = 0
for i in range(len(col1)):
appear = col2.count(col1[i])
tabscore.append(col1[i]*appear)
similarity_score = sum(tabscore)
return similarity_score
f = open('input/inputday1.txt','r')
content = f.readlines()
print(content)
f.close()
col1 = []
col2 = []
for data in content:
c1,c2 = str.split(data)
col1.append(int(c1))
col2.append(int(c2))
print(col1,col2)
col1.sort()
col2.sort()
tabdist = distance(col1,col2)
ans = 0
for number in tabdist:
ans += number
print(""ANSWER : "",ans)
print(""SIM SCORE = "",sim_score(col1,col2))",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"from collections import Counter
with open('inputs/input.txt', 'r') as file:
line: str = file.readline().rstrip('\n')
list1: list[int] = []
list2: list[int] = []
while line:
l: list[str] = line.split(' ')
list1.append(int(l[0]))
list2.append(int(l[-1]))
line = file.readline().rstrip('\n')
count_dict = Counter(list2)
similarity = 0
for k in list1:
if k in count_dict:
similarity += (k * count_dict[k])
print(f'Similarity Score: {similarity}')
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"def read_file(file_path):
with open(file_path, 'r') as file:
return file.readlines()
def separate_columns(lines):
column1 = []
column2 = []
for line in lines:
col1, col2 = line.strip().split()
column1.append(col1)
column2.append(col2)
return column1, column2
def similarity_score(column1, column2):
progressive_sum = 0
for value1 in column1:
counter = 0
for value2 in column2:
if value1 == value2:
counter += 1
progressive_sum += counter*int(value1)
return progressive_sum
file_path = './input.txt'
lines = read_file(file_path)
column1, column2 = separate_columns(lines)
print(f""Similarity score: {similarity_score(column1, column2)}"")
",python:3.9
2024,1,2,"--- Day 1: Historian Hysteria ---
The Chief Historian is always present for the big Christmas sleigh launch, but nobody has seen him in months! Last anyone heard, he was visiting locations that are historically significant to the North Pole; a group of Senior Historians has asked you to accompany them as they check the places they think he was most likely to visit.
As each location is checked, they will mark it on their list with a star. They figure the Chief Historian must be in one of the first fifty places they'll look, so in order to save Christmas, you need to help them get fifty stars on their list before Santa takes off on December 25th.
Collect stars by solving puzzles. Two puzzles will be made available on each day in the Advent calendar; the second puzzle is unlocked when you complete the first. Each puzzle grants one star. Good luck!
You haven't even left yet and the group of Elvish Senior Historians has already hit a problem: their list of locations to check is currently empty. Eventually, someone decides that the best place to check first would be the Chief Historian's office.
Upon pouring into the office, everyone confirms that the Chief Historian is indeed nowhere to be found. Instead, the Elves discover an assortment of notes and lists of historically significant locations! This seems to be the planning the Chief Historian was doing before he left. Perhaps these notes can be used to determine which locations to search?
Throughout the Chief's office, the historically significant locations are listed not by name but by a unique number called the location ID. To make sure they don't miss anything, The Historians split into two groups, each searching the office and trying to create their own complete list of location IDs.
There's just one problem: by holding the two lists up side by side (your puzzle input), it quickly becomes clear that the lists aren't very similar. Maybe you can help The Historians reconcile their lists?
For example:
3 4
4 3
2 5
1 3
3 9
3 3
Maybe the lists are only off by a small amount! To find out, pair up the numbers and measure how far apart they are. Pair up the smallest number in the left list with the smallest number in the right list, then the second-smallest left number with the second-smallest right number, and so on.
Within each pair, figure out how far apart the two numbers are; you'll need to add up all of those distances. For example, if you pair up a 3 from the left list with a 7 from the right list, the distance apart is 4; if you pair up a 9 with a 3, the distance apart is 6.
In the example list above, the pairs and distances would be as follows:
The smallest number in the left list is 1, and the smallest number in the right list is 3. The distance between them is 2.
The second-smallest number in the left list is 2, and the second-smallest number in the right list is another 3. The distance between them is 1.
The third-smallest number in both lists is 3, so the distance between them is 0.
The next numbers to pair up are 3 and 4, a distance of 1.
The fifth-smallest numbers in each list are 3 and 5, a distance of 2.
Finally, the largest number in the left list is 4, while the largest number in the right list is 9; these are a distance 5 apart.
To find the total distance between the left list and the right list, add up the distances between all of the pairs you found. In the example above, this is 2 + 1 + 0 + 1 + 2 + 5, a total distance of 11!
Your actual left and right lists contain many location IDs. What is the total distance between your lists?
Your puzzle answer was 2378066.
--- Part Two ---
Your analysis only confirmed what everyone feared: the two lists of location IDs are indeed very different.
Or are they?
The Historians can't agree on which group made the mistakes or how to read most of the Chief's handwriting, but in the commotion you notice an interesting detail: a lot of location IDs appear in both lists! Maybe the other numbers aren't location IDs at all but rather misinterpreted handwriting.
This time, you'll need to figure out exactly how often each number from the left list appears in the right list. Calculate a total similarity score by adding up each number in the left list after multiplying it by the number of times that number appears in the right list.
Here are the same example lists again:
3 4
4 3
2 5
1 3
3 9
3 3
For these example lists, here is the process of finding the similarity score:
The first number in the left list is 3. It appears in the right list three times, so the similarity score increases by 3 * 3 = 9.
The second number in the left list is 4. It appears in the right list once, so the similarity score increases by 4 * 1 = 4.
The third number in the left list is 2. It does not appear in the right list, so the similarity score does not increase (2 * 0 = 0).
The fourth number, 1, also does not appear in the right list.
The fifth number, 3, appears in the right list three times; the similarity score increases by 9.
The last number, 3, appears in the right list three times; the similarity score again increases by 9.
So, for these example lists, the similarity score at the end of this process is 31 (9 + 4 + 0 + 0 + 9 + 9).
Once again consider your left and right lists. What is their similarity score?",18934359,"def calculate_similarity_score(left, right):
score = 0
for left_element in left:
score += left_element * num_times_in_list(left_element, right)
return score
def num_times_in_list(number, right_list):
num_times = 0
for element in right_list:
if number == element:
num_times += 1
return num_times
def build_lists(contents):
left = []
right = []
for line in contents.split('\n'):
if line:
le, re = line.split()
left.append(int(le))
right.append(int(re))
return left, right
if __name__ == '__main__':
with open('1/day_1_input.txt', 'r') as f:
contents = f.read()
left, right = build_lists(contents)
score = calculate_similarity_score(left, right)
print(score)
",python:3.9
|