davanstrien HF Staff commited on
Commit
0867bca
·
1 Parent(s): f26037b

Delete web_classification.py

Browse files
Files changed (1) hide show
  1. web_classification.py +0 -208
web_classification.py DELETED
@@ -1,208 +0,0 @@
1
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """British Library Web Classification Dataset."""
15
-
16
- import datasets
17
- import csv
18
-
19
- _CITATION = """\
20
- TODO
21
- """
22
-
23
- _DESCRIPTION = """\
24
- The dataset comprises a manually curated selective archive produced by UKWA which includes the classification of sites into a two-tiered subject hierarchy.
25
- """
26
- _HOMEPAGE = "https://doi.org/10.5259/ukwa.ds.1/classification/1"
27
-
28
- _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
29
-
30
- _URL = "https://bl.iro.bl.uk/downloads/78e2421a-70ea-426d-8a67-57e4a8b23019?locale=en"
31
-
32
-
33
- class WebArchiveClassificationDataset(datasets.GeneratorBasedBuilder):
34
- """Web Archive Classification Dataset"""
35
-
36
- VERSION = datasets.Version("1.1.0")
37
-
38
- def _info(self):
39
- features = datasets.Features(
40
- {
41
- "primary_category": datasets.ClassLabel(
42
- names=[
43
- "Arts & Humanities",
44
- "Business, Economy & Industry",
45
- "Company Web Sites",
46
- "Computer Science, Information Technology and Web Technology",
47
- "Crime, Criminology, Police and Prisons",
48
- "Digital Society",
49
- "Education & Research",
50
- "Environment",
51
- "Government, Law & Politics",
52
- "History",
53
- "Law and Legal System",
54
- "Libraries, Archives and Museums",
55
- "Life Sciences",
56
- "Literature",
57
- "Medicine & Health",
58
- "Politics, Political Theory and Political Systems",
59
- "Popular Science",
60
- "Publishing, Printing and Bookselling",
61
- "Religion",
62
- "Science & Technology",
63
- "Social Problems and Welfare",
64
- "Society & Culture",
65
- "Sports and Recreation",
66
- "Travel & Tourism",
67
- ]
68
- ),
69
- "secondary_category": datasets.ClassLabel(
70
- names=[
71
- "Architecture",
72
- "Art and Design",
73
- "Comedy and Humour",
74
- "Dance",
75
- "Family History / Genealogy",
76
- "Film / Cinema",
77
- "Geography",
78
- "History",
79
- "Languages",
80
- "Literature",
81
- "Live Art",
82
- "Local History",
83
- "Music",
84
- "News and Contemporary Events",
85
- "Oral History in the UK",
86
- "Philosophy and Ethics",
87
- "Publishing, Printing and Bookselling",
88
- "Religion",
89
- "TV and Radio",
90
- "Theatre",
91
- "Agriculture, Fishing, and Forestry",
92
- "Banking, Insurance, Accountancy and Financial Economics",
93
- "Business Studies and Management Theory",
94
- "Company Web Sites",
95
- "Credit Crunch",
96
- "Economic Development, Enterprise and Aid",
97
- "Economics and Economic Theory",
98
- "Employment, Unemployment and Labour Economics",
99
- "Energy",
100
- "Industries",
101
- "Marketing and Market Research",
102
- "Trade, Commerce, and Globalisation",
103
- "Transport and Infrastructure",
104
- "Cambridge Network",
105
- "Video Games",
106
- "Governing the Police",
107
- "Blogs",
108
- "Dictionaries, Encyclopaedias, and Reference Works",
109
- "Further Education",
110
- "Higher Education",
111
- "Libraries, Archives and Museums",
112
- "Library Key Issues",
113
- "Lifelong Learning",
114
- "Preschool Education",
115
- "School Education",
116
- "Special Needs Education",
117
- "Vocational Education",
118
- "Indian Ocean Tsunami December 2004",
119
- "Central Government",
120
- "Civil Rights, Pressure Groups, and Trade Unions",
121
- "Crime, Criminology, Police and Prisons",
122
- "Devolved Government",
123
- "European Parliament Elections 2009",
124
- "Inter-Governmental Agencies",
125
- "International Relations, Diplomacy, and Peace",
126
- "Law and Legal System",
127
- "Local Government",
128
- "London Mayoral Election 2008",
129
- "Political Parties",
130
- "Politics, Political Theory and Political Systems",
131
- "Public Inquiries",
132
- "Scottish Parliamentary Election - 2007",
133
- "Spending Cuts 2010: Impact on Social Welfare",
134
- "UK General Election 2005",
135
- "Slavery and Abolition in the Caribbean",
136
- "Religion, politics and law since 2005",
137
- "Evolving role of libraries in the UK",
138
- "History of Libraries Collection",
139
- "Darwin 200",
140
- "19th Century English Literature",
141
- "Alternative Medicine / Complementary Medicine",
142
- "Conditions and Diseases",
143
- "Health Organisations and Services",
144
- "Medicines, Treatments and Therapies",
145
- "Men's Issues",
146
- "Mental Health",
147
- "Pandemic Influenza",
148
- "Personal Experiences of Illness",
149
- "Public Health and Safety",
150
- "Women's Issues",
151
- "Political Action and Communication",
152
- "E-publishing Trends",
153
- "Free Church",
154
- "Quakers",
155
- "Computer Science, Information Technology and Web Technology",
156
- "Engineering",
157
- "Environment",
158
- "Life Sciences",
159
- "Mathematics",
160
- "Physical Sciences",
161
- "Popular Science",
162
- "Zoology, Veterinary Science and Animal Health",
163
- "Communities",
164
- "Digital Society",
165
- "Food and Drink",
166
- "London Terrorist Attack 7th July 2005",
167
- "Queen's Diamond Jubilee, 2012",
168
- "Social Problems and Welfare",
169
- "Sociology, Anthropology and Population Studies",
170
- "Sports and Recreation",
171
- "Travel & Tourism",
172
- "British Countryside",
173
- "Olympic & Paralympic Games 2012",
174
- "Cornwall",
175
- ]
176
- ),
177
- "title": datasets.Value("string"),
178
- "url": datasets.Value("string"),
179
- }
180
- )
181
- return datasets.DatasetInfo(
182
- description=_DESCRIPTION,
183
- features=features,
184
- homepage=_HOMEPAGE,
185
- license=_LICENSE,
186
- citation=_CITATION,
187
- )
188
-
189
- def _split_generators(self, dl_manager):
190
-
191
- csv_file = dl_manager.download_and_extract(_URL)
192
- return [
193
- datasets.SplitGenerator(
194
- name=datasets.Split.TRAIN,
195
- gen_kwargs={"csv_file": csv_file},
196
- ),
197
- ]
198
-
199
- def _generate_examples(self, csv_file):
200
- with open(csv_file) as f:
201
- reader = csv.DictReader(f, dialect="excel-tab")
202
- for id_, row in enumerate(reader):
203
- yield id_, {
204
- "primary_category": row["Primary Category"],
205
- "secondary_category": row["Secondary Category"],
206
- "title": row["Title"],
207
- "url": row["URL"],
208
- }