Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,296 Bytes
1eb98b2
 
 
 
 
 
 
 
 
 
 
 
 
c129ba5
1eb98b2
c129ba5
 
1eb98b2
 
 
 
 
5833de7
 
 
 
 
 
 
 
 
 
16defc6
5833de7
 
 
 
1eb98b2
16defc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e38e2
16defc6
 
 
 
 
 
 
 
 
 
b0116f9
 
 
 
 
16defc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e38e2
16defc6
 
 
 
 
2199b48
16defc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e38e2
16defc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3817a00
 
 
 
 
 
 
 
 
bd54035
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
dataset_info:
  features:
  - name: task_id
    dtype: string
  - name: query
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 5175349
    num_examples: 76
  download_size: 1660121
  dataset_size: 5175349
configs:
- config_name: default
  data_files:
  - split: test
    path: data/test-*
license: apache-2.0
language:
- en
- zh
- jp
- es
- el
tags:
- finance
- multilingual
pretty_name: PolyFiQA-Easy
size_categories:
- n<1K
task_categories:
- question-answering
---

# Dataset Card for PolyFiQA-Easy

## Table of Contents

- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** https://huggingface.co/collections/TheFinAI/multifinben-6826f6fc4bc13d8af4fab223
- **Repository:** https://huggingface.co/datasets/TheFinAI/polyfiqa-easy
- **Paper:** MultiFinBen: A Multilingual, Multimodal, and Difficulty-Aware Benchmark for Financial LLM Evaluation
- **Leaderboard:** https://huggingface.co/spaces/TheFinAI/Open-FinLLM-Leaderboard

### Dataset Summary

**PolyFiQA-Easy** is a multilingual financial question-answering dataset designed to evaluate financial reasoning in a simplified setting. Each instance consists of a task identifier, a query prompt, an associated financial question, and the correct answer. The Easy split focuses on queries that can be answered with minimal document retrieval, making it ideal for low-latency or resource-constrained systems.

### Supported Tasks and Leaderboards

- **Tasks:**
  - question-answering
- **Evaluation Metrics:**
  - ROUGE-1

### Languages

- English (en)
- Chinese (zh)
- Japanese (jp)
- Spanish (es)
- Greek (el)

## Dataset Structure

### Data Instances

Each instance in the dataset contains:

- `task_id`: A unique identifier for the query-task pair.
- `query`: A brief query statement from the financial domain.
- `question`: The full question posed based on the query context.
- `answer`: The correct answer string.

### Data Fields

| Field     | Type   | Description                                  |
|-----------|--------|----------------------------------------------|
| task_id   | string | Unique ID per task                           |
| query     | string | Financial query (short form)                 |
| question  | string | Full natural-language financial question     |
| answer    | string | Ground-truth answer to the question          |

### Data Splits

| Split | # Examples | Size (bytes) |
|-------|------------|--------------|
| test  | 76         | 5,175,349    |

## Dataset Creation

### Curation Rationale

PolyFiQA-Easy was curated to provide a lightweight yet robust benchmark for financial question answering with minimal retrieval burden. It aims to evaluate models’ reasoning on self-contained or short-context questions in finance.

### Source Data

#### Initial Data Collection

The source data was derived from a diverse collection of English financial reports. Questions were derived from real-world financial scenarios and manually adapted to fit a concise QA format.

#### Source Producers

Data was created by researchers and annotators with backgrounds in finance, NLP, and data curation.

### Annotations

#### Annotation Process

Questions and answers were authored and verified through a multi-step validation pipeline involving domain experts.

#### Annotators

A team of finance researchers and data scientists.

### Personal and Sensitive Information

The dataset contains no personal or sensitive information. All content is synthetic or anonymized for safe usage.

## Considerations for Using the Data

### Social Impact of Dataset

PolyFiQA-Easy contributes to research in financial NLP by enabling multilingual evaluation under constrained settings.

### Discussion of Biases

- May over-represent English financial contexts.
- Questions emphasize clarity and answerability over real-world ambiguity.

### Other Known Limitations

- Limited size (76 examples).
- Focused on easy questions; may not generalize to complex reasoning tasks.

## Additional Information

### Dataset Curators

- The FinAI Team

### Licensing Information

- **License:** Apache License 2.0

### Citation Information

If you use this dataset, please cite:

```bibtex
@misc{peng2025multifinbenmultilingualmultimodaldifficultyaware,
      title={MultiFinBen: A Multilingual, Multimodal, and Difficulty-Aware Benchmark for Financial LLM Evaluation}, 
      author={Xueqing Peng and Lingfei Qian and Yan Wang and Ruoyu Xiang and Yueru He and Yang Ren and Mingyang Jiang and Jeff Zhao and Huan He and Yi Han and Yun Feng and Yuechen Jiang and Yupeng Cao and Haohang Li and Yangyang Yu and Xiaoyu Wang and Penglei Gao and Shengyuan Lin and Keyi Wang and Shanshan Yang and Yilun Zhao and Zhiwei Liu and Peng Lu and Jerry Huang and Suyuchen Wang and Triantafillos Papadopoulos and Polydoros Giannouris and Efstathia Soufleri and Nuo Chen and Guojun Xiong and Zhiyang Deng and Yijia Zhao and Mingquan Lin and Meikang Qiu and Kaleb E Smith and Arman Cohan and Xiao-Yang Liu and Jimin Huang and Alejandro Lopez-Lira and Xi Chen and Junichi Tsujii and Jian-Yun Nie and Sophia Ananiadou and Qianqian Xie},
      year={2025},
      eprint={2506.14028},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2506.14028}, 
}
```