File size: 6,892 Bytes
8e38a20 9c7594b 734e334 9c7594b 8e38a20 9c7594b 13caf93 9c7594b f8d760d 9c7594b f8d760d 9c7594b 4084777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
dataset_info:
features:
- name: query
dtype: string
- name: answer
dtype: string
- name: label
sequence: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 649136
num_examples: 320
- name: validation
num_bytes: 157953
num_examples: 80
- name: test
num_bytes: 230512
num_examples: 100
download_size: 271347
dataset_size: 1037601
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
license: apache-2.0
task_categories:
- token-classification
language:
- gr
tags:
- finance
- text
pretty_name: Plutus Finner Text
size_categories:
- n<1K
---
----------------------------------------------------------------
# Dataset Card for Plutus Finner Text
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://huggingface.co/collections/TheFinAI/plutus-benchmarking-greek-financial-llms-67bc718fb8d897c65f1e87db
- **Repository:** https://huggingface.co/datasets/TheFinAI/plutus-finner-text
- **Paper:** https://arxiv.org/pdf/2502.18772
- **Leaderboard:** https://huggingface.co/spaces/TheFinAI/Open-Greek-Financial-LLM-Leaderboard#/
- **Model:** https://huggingface.co/spaces/TheFinAI/plutus-8B-instruct
### Dataset Summary
Plutus Finner Text is a dataset crafted for text named entity recognition (NER) within financial documents. Focusing on Greek language financial texts, this resource combines financial queries with answers, labels, and additional contextual text. The dataset is designed as a benchmark to enhance NER capabilities for extracting and categorizing textual entities in finance.
### Supported Tasks
- **Task:** Text Named Entity Recognition
- **Evaluation Metrics:** Entity F1 Score
### Languages
- Greek
## Dataset Structure
### Data Instances
Each instance in the dataset is composed of four fields:
- **query:** A financial query or prompt that includes text potentially containing named entities.
- **answer:** The expected answer associated with the query.
- **label:** A sequence field containing labels which denote the named entities.
- **text:** Additional context or commentary that clarifies the query.
### Data Fields
- **query:** String – Represents the financial query or prompt.
- **answer:** String – The corresponding answer for the query.
- **label:** Sequence of strings – Contains the named entity labels linked to each instance.
- **text:** String – Provides supplementary context or details.
### Data Splits
The dataset is organized into three splits:
- **Train:** 320 instances (649,136 bytes)
- **Validation:** 80 instances (157,953 bytes)
- **Test:** 100 instances (230,512 bytes)
## Dataset Creation
### Curation Rationale
The Plutus Finner Text dataset was developed to support robust text-based named entity recognition in the financial domain, tailored specifically for Greek language texts. It aims to empower researchers and practitioners with a challenging benchmark for extracting and classifying named entities within financial documents.
### Source Data
#### Initial Data Collection and Normalization
The source data was derived from a diverse collection of Greek financial annual reports containing numeric information.
#### Who are the Source Language Producers?
Greek financial annual reports.
### Annotations
#### Annotation Process
The annotation process involved domain experts in both finance and linguistics who manually identified and marked the relevant named entities within the financial queries and contextual text. Quality control was maintained to ensure high annotation consistency.
#### Who are the Annotators?
A collaboration between financial analysts, data scientists, and linguists was established to annotate the dataset accurately and reliably.
### Personal and Sensitive Information
This dataset has been curated to exclude any personally identifiable information (PII) and focuses solely on financial textual data and entity extraction.
## Considerations for Using the Data
### Social Impact of Dataset
By advancing text NER within the Greek financial sector, this dataset supports improved information extraction and automated analysis—benefiting financial decision-making and research across the industry and academia.
### Discussion of Biases
- The domain-specific language and textual formats may limit generalizability outside Greek financial texts.
- Annotation subjectivity could introduce biases in the identification of entities.
- The dataset’s focused scope in finance may require further adaptation for use in broader contexts.
### Other Known Limitations
- Additional pre-processing might be needed to handle variations in text and entity presentation.
- The dataset’s application is primarily limited to the financial domain.
## Additional Information
### Dataset Curators
- Xueqing Peng
- Triantafillos Papadopoulos
- Efstathia Soufleri
- Polydoros Giannouris
- Ruoyu Xiang
- Yan Wang
- Lingfei Qian
- Jimin Huang
- Qianqian Xie
- Sophia Ananiadou
The research is supported by NaCTeM, Archimedes RC, and The Fin AI.
### Licensing Information
- **License:** Apache License 2.0
### Citation Information
If you use this dataset in your research, please consider citing it as follows:
```bibtex
@misc{peng2025plutusbenchmarkinglargelanguage,
title={Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance},
author={Xueqing Peng and Triantafillos Papadopoulos and Efstathia Soufleri and Polydoros Giannouris and Ruoyu Xiang and Yan Wang and Lingfei Qian and Jimin Huang and Qianqian Xie and Sophia Ananiadou},
year={2025},
eprint={2502.18772},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.18772},
}
```
|