Datasets:

Modalities:
Text
Formats:
parquet
Languages:
gr
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,892 Bytes
8e38a20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c7594b
 
734e334
9c7594b
 
 
 
 
 
 
 
8e38a20
9c7594b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13caf93
9c7594b
f8d760d
9c7594b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8d760d
 
 
 
 
 
 
 
 
 
 
 
9c7594b
 
 
 
 
 
 
 
 
4084777
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
dataset_info:
  features:
  - name: query
    dtype: string
  - name: answer
    dtype: string
  - name: label
    sequence: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 649136
    num_examples: 320
  - name: validation
    num_bytes: 157953
    num_examples: 80
  - name: test
    num_bytes: 230512
    num_examples: 100
  download_size: 271347
  dataset_size: 1037601
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- token-classification
language:
- gr
tags:
- finance
- text
pretty_name: Plutus Finner Text
size_categories:
- n<1K
---

----------------------------------------------------------------
# Dataset Card for Plutus Finner Text

## Table of Contents

- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://huggingface.co/collections/TheFinAI/plutus-benchmarking-greek-financial-llms-67bc718fb8d897c65f1e87db
- **Repository:** https://huggingface.co/datasets/TheFinAI/plutus-finner-text
- **Paper:** https://arxiv.org/pdf/2502.18772
- **Leaderboard:** https://huggingface.co/spaces/TheFinAI/Open-Greek-Financial-LLM-Leaderboard#/
- **Model:** https://huggingface.co/spaces/TheFinAI/plutus-8B-instruct

### Dataset Summary

Plutus Finner Text is a dataset crafted for text named entity recognition (NER) within financial documents. Focusing on Greek language financial texts, this resource combines financial queries with answers, labels, and additional contextual text. The dataset is designed as a benchmark to enhance NER capabilities for extracting and categorizing textual entities in finance.

### Supported Tasks

- **Task:** Text Named Entity Recognition
- **Evaluation Metrics:** Entity F1 Score

### Languages

- Greek

## Dataset Structure

### Data Instances

Each instance in the dataset is composed of four fields:

- **query:** A financial query or prompt that includes text potentially containing named entities.
- **answer:** The expected answer associated with the query.
- **label:** A sequence field containing labels which denote the named entities.
- **text:** Additional context or commentary that clarifies the query.

### Data Fields

- **query:** String – Represents the financial query or prompt.
- **answer:** String – The corresponding answer for the query.
- **label:** Sequence of strings – Contains the named entity labels linked to each instance.
- **text:** String – Provides supplementary context or details.

### Data Splits

The dataset is organized into three splits:

- **Train:** 320 instances (649,136 bytes)
- **Validation:** 80 instances (157,953 bytes)
- **Test:** 100 instances (230,512 bytes)

## Dataset Creation

### Curation Rationale

The Plutus Finner Text dataset was developed to support robust text-based named entity recognition in the financial domain, tailored specifically for Greek language texts. It aims to empower researchers and practitioners with a challenging benchmark for extracting and classifying named entities within financial documents.

### Source Data

#### Initial Data Collection and Normalization

The source data was derived from a diverse collection of Greek financial annual reports containing numeric information.

#### Who are the Source Language Producers?

Greek financial annual reports.

### Annotations

#### Annotation Process

The annotation process involved domain experts in both finance and linguistics who manually identified and marked the relevant named entities within the financial queries and contextual text. Quality control was maintained to ensure high annotation consistency.

#### Who are the Annotators?

A collaboration between financial analysts, data scientists, and linguists was established to annotate the dataset accurately and reliably.

### Personal and Sensitive Information

This dataset has been curated to exclude any personally identifiable information (PII) and focuses solely on financial textual data and entity extraction.

## Considerations for Using the Data

### Social Impact of Dataset

By advancing text NER within the Greek financial sector, this dataset supports improved information extraction and automated analysis—benefiting financial decision-making and research across the industry and academia.

### Discussion of Biases

- The domain-specific language and textual formats may limit generalizability outside Greek financial texts.
- Annotation subjectivity could introduce biases in the identification of entities.
- The dataset’s focused scope in finance may require further adaptation for use in broader contexts.

### Other Known Limitations

- Additional pre-processing might be needed to handle variations in text and entity presentation.
- The dataset’s application is primarily limited to the financial domain.

## Additional Information

### Dataset Curators

- Xueqing Peng
- Triantafillos Papadopoulos
- Efstathia Soufleri
- Polydoros Giannouris
- Ruoyu Xiang
- Yan Wang
- Lingfei Qian
- Jimin Huang
- Qianqian Xie
- Sophia Ananiadou

The research is supported by NaCTeM, Archimedes RC, and The Fin AI.

### Licensing Information

- **License:** Apache License 2.0

### Citation Information

If you use this dataset in your research, please consider citing it as follows:

```bibtex
@misc{peng2025plutusbenchmarkinglargelanguage,
      title={Plutus: Benchmarking Large Language Models in Low-Resource Greek Finance}, 
      author={Xueqing Peng and Triantafillos Papadopoulos and Efstathia Soufleri and Polydoros Giannouris and Ruoyu Xiang and Yan Wang and Lingfei Qian and Jimin Huang and Qianqian Xie and Sophia Ananiadou},
      year={2025},
      eprint={2502.18772},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.18772}, 
}
```