File size: 5,347 Bytes
eb7f9ca ff76ab2 eb7f9ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
from xml.etree import ElementTree as ET
import datasets
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {miners-detection},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of of photos captured within various mines, focusing on **miners**
engaged in their work. Each photo is annotated with bounding box detection of the
miners, an attribute highlights whether each miner is sitting or standing in the photo.
The dataset's diverse applications such as computer vision, safety assessment and others
make it a valuable resource for *researchers, employers, and policymakers in the mining
industry*.
"""
_NAME = "miners-detection"
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = ""
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
_LABELS = ["Miner"]
class MinersDetection(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"name": datasets.Value("string"),
"image": datasets.Image(),
"mask": datasets.Image(),
"width": datasets.Value("uint16"),
"height": datasets.Value("uint16"),
"shapes": datasets.Sequence(
{
"label": datasets.ClassLabel(
num_classes=len(_LABELS),
names=_LABELS,
),
"type": datasets.Value("string"),
"points": datasets.Sequence(
datasets.Sequence(
datasets.Value("float"),
),
),
"rotation": datasets.Value("float"),
"occluded": datasets.Value("uint8"),
"attributes": datasets.Sequence(
{
"name": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
}
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
images = dl_manager.download(f"{_DATA}images.tar.gz")
masks = dl_manager.download(f"{_DATA}boxes.tar.gz")
annotations = dl_manager.download(f"{_DATA}annotations.xml")
images = dl_manager.iter_archive(images)
masks = dl_manager.iter_archive(masks)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images": images,
"masks": masks,
"annotations": annotations,
},
),
]
@staticmethod
def parse_shape(shape: ET.Element) -> dict:
label = shape.get("label")
shape_type = shape.tag
rotation = shape.get("rotation", 0.0)
occluded = shape.get("occluded", 0)
points = None
if shape_type == "points":
points = tuple(map(float, shape.get("points").split(",")))
elif shape_type == "box":
points = [
(float(shape.get("xtl")), float(shape.get("ytl"))),
(float(shape.get("xbr")), float(shape.get("ybr"))),
]
elif shape_type == "polygon":
points = [
tuple(map(float, point.split(",")))
for point in shape.get("points").split(";")
]
attributes = []
for attr in shape:
attr_name = attr.get("name")
attr_text = attr.text
attributes.append({"name": attr_name, "text": attr_text})
shape_data = {
"label": label,
"type": shape_type,
"points": points,
"rotation": rotation,
"occluded": occluded,
"attributes": attributes,
}
return shape_data
def _generate_examples(self, images, masks, annotations):
tree = ET.parse(annotations)
root = tree.getroot()
for idx, (
(image_path, image),
(mask_path, mask),
) in enumerate(zip(images, masks)):
image_name = image_path.split("/")[-1]
img = root.find(f"./image[@name='images/{image_name}']")
image_id = img.get("id")
name = img.get("name")
width = img.get("width")
height = img.get("height")
shapes = [self.parse_shape(shape) for shape in img]
yield idx, {
"id": image_id,
"name": name,
"image": {"path": image_path, "bytes": image.read()},
"mask": {"path": mask_path, "bytes": mask.read()},
"width": width,
"height": height,
"shapes": shapes,
}
|