File size: 5,347 Bytes
eb7f9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff76ab2
eb7f9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from xml.etree import ElementTree as ET

import datasets

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {miners-detection},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset consists of of photos captured within various mines, focusing on **miners**
engaged in their work. Each photo is annotated with bounding box detection of the
miners, an attribute highlights whether each miner is sitting or standing in the photo.

The dataset's diverse applications such as computer vision, safety assessment and others
make it a valuable resource for *researchers, employers, and policymakers in the mining
industry*.
"""

_NAME = "miners-detection"

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = ""

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"

_LABELS = ["Miner"]


class MinersDetection(datasets.GeneratorBasedBuilder):
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "name": datasets.Value("string"),
                    "image": datasets.Image(),
                    "mask": datasets.Image(),
                    "width": datasets.Value("uint16"),
                    "height": datasets.Value("uint16"),
                    "shapes": datasets.Sequence(
                        {
                            "label": datasets.ClassLabel(
                                num_classes=len(_LABELS),
                                names=_LABELS,
                            ),
                            "type": datasets.Value("string"),
                            "points": datasets.Sequence(
                                datasets.Sequence(
                                    datasets.Value("float"),
                                ),
                            ),
                            "rotation": datasets.Value("float"),
                            "occluded": datasets.Value("uint8"),
                            "attributes": datasets.Sequence(
                                {
                                    "name": datasets.Value("string"),
                                    "text": datasets.Value("string"),
                                }
                            ),
                        }
                    ),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        images = dl_manager.download(f"{_DATA}images.tar.gz")
        masks = dl_manager.download(f"{_DATA}boxes.tar.gz")
        annotations = dl_manager.download(f"{_DATA}annotations.xml")
        images = dl_manager.iter_archive(images)
        masks = dl_manager.iter_archive(masks)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "images": images,
                    "masks": masks,
                    "annotations": annotations,
                },
            ),
        ]

    @staticmethod
    def parse_shape(shape: ET.Element) -> dict:
        label = shape.get("label")
        shape_type = shape.tag
        rotation = shape.get("rotation", 0.0)
        occluded = shape.get("occluded", 0)

        points = None

        if shape_type == "points":
            points = tuple(map(float, shape.get("points").split(",")))

        elif shape_type == "box":
            points = [
                (float(shape.get("xtl")), float(shape.get("ytl"))),
                (float(shape.get("xbr")), float(shape.get("ybr"))),
            ]

        elif shape_type == "polygon":
            points = [
                tuple(map(float, point.split(",")))
                for point in shape.get("points").split(";")
            ]

        attributes = []

        for attr in shape:
            attr_name = attr.get("name")
            attr_text = attr.text
            attributes.append({"name": attr_name, "text": attr_text})

        shape_data = {
            "label": label,
            "type": shape_type,
            "points": points,
            "rotation": rotation,
            "occluded": occluded,
            "attributes": attributes,
        }

        return shape_data

    def _generate_examples(self, images, masks, annotations):
        tree = ET.parse(annotations)
        root = tree.getroot()

        for idx, (
            (image_path, image),
            (mask_path, mask),
        ) in enumerate(zip(images, masks)):
            image_name = image_path.split("/")[-1]
            img = root.find(f"./image[@name='images/{image_name}']")

            image_id = img.get("id")
            name = img.get("name")
            width = img.get("width")
            height = img.get("height")
            shapes = [self.parse_shape(shape) for shape in img]

            yield idx, {
                "id": image_id,
                "name": name,
                "image": {"path": image_path, "bytes": image.read()},
                "mask": {"path": mask_path, "bytes": mask.read()},
                "width": width,
                "height": height,
                "shapes": shapes,
            }