from xml.etree import ElementTree as ET import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {miners-detection}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consists of of photos captured within various mines, focusing on **miners** engaged in their work. Each photo is annotated with bounding box detection of the miners, an attribute highlights whether each miner is sitting or standing in the photo. The dataset's diverse applications such as computer vision, safety assessment and others make it a valuable resource for *researchers, employers, and policymakers in the mining industry*. """ _NAME = "miners-detection" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" _LABELS = ["Miner"] class MinersDetection(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "name": datasets.Value("string"), "image": datasets.Image(), "mask": datasets.Image(), "width": datasets.Value("uint16"), "height": datasets.Value("uint16"), "shapes": datasets.Sequence( { "label": datasets.ClassLabel( num_classes=len(_LABELS), names=_LABELS, ), "type": datasets.Value("string"), "points": datasets.Sequence( datasets.Sequence( datasets.Value("float"), ), ), "rotation": datasets.Value("float"), "occluded": datasets.Value("uint8"), "attributes": datasets.Sequence( { "name": datasets.Value("string"), "text": datasets.Value("string"), } ), } ), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download(f"{_DATA}images.tar.gz") masks = dl_manager.download(f"{_DATA}boxes.tar.gz") annotations = dl_manager.download(f"{_DATA}annotations.xml") images = dl_manager.iter_archive(images) masks = dl_manager.iter_archive(masks) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": images, "masks": masks, "annotations": annotations, }, ), ] @staticmethod def parse_shape(shape: ET.Element) -> dict: label = shape.get("label") shape_type = shape.tag rotation = shape.get("rotation", 0.0) occluded = shape.get("occluded", 0) points = None if shape_type == "points": points = tuple(map(float, shape.get("points").split(","))) elif shape_type == "box": points = [ (float(shape.get("xtl")), float(shape.get("ytl"))), (float(shape.get("xbr")), float(shape.get("ybr"))), ] elif shape_type == "polygon": points = [ tuple(map(float, point.split(","))) for point in shape.get("points").split(";") ] attributes = [] for attr in shape: attr_name = attr.get("name") attr_text = attr.text attributes.append({"name": attr_name, "text": attr_text}) shape_data = { "label": label, "type": shape_type, "points": points, "rotation": rotation, "occluded": occluded, "attributes": attributes, } return shape_data def _generate_examples(self, images, masks, annotations): tree = ET.parse(annotations) root = tree.getroot() for idx, ( (image_path, image), (mask_path, mask), ) in enumerate(zip(images, masks)): image_name = image_path.split("/")[-1] img = root.find(f"./image[@name='images/{image_name}']") image_id = img.get("id") name = img.get("name") width = img.get("width") height = img.get("height") shapes = [self.parse_shape(shape) for shape in img] yield idx, { "id": image_id, "name": name, "image": {"path": image_path, "bytes": image.read()}, "mask": {"path": mask_path, "bytes": mask.read()}, "width": width, "height": height, "shapes": shapes, }