feat: add load script
Browse files
wagons-images-classification.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from xml.etree import ElementTree as ET
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
_CITATION = """\
|
6 |
+
@InProceedings{huggingface:dataset,
|
7 |
+
title = {wagons-images-classification},
|
8 |
+
author = {TrainingDataPro},
|
9 |
+
year = {2023}
|
10 |
+
}
|
11 |
+
"""
|
12 |
+
|
13 |
+
_DESCRIPTION = """\
|
14 |
+
The dataset consists of images depicting **loaded and unloaded** wagons.
|
15 |
+
The data are organasied in two folders for loaded and unloaded wagons and assisted with
|
16 |
+
.CSV file containing text classification of the images.
|
17 |
+
This dataset can be useful for various tasks, such as *image classification, object
|
18 |
+
detection and data-driven analyses related to wagon loading and unloading processes.
|
19 |
+
The dataset is useful for **rail transport sphere**, it can be utilised for automation
|
20 |
+
the identification and classification of the wagons and further optimization of the
|
21 |
+
processes in the industry.
|
22 |
+
"""
|
23 |
+
|
24 |
+
_NAME = "wagons-images-classification"
|
25 |
+
|
26 |
+
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
27 |
+
|
28 |
+
_LICENSE = ""
|
29 |
+
|
30 |
+
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
|
31 |
+
|
32 |
+
_LABELS = ["loaded", "unloaded"]
|
33 |
+
|
34 |
+
|
35 |
+
class MinersDetection(datasets.GeneratorBasedBuilder):
|
36 |
+
def _info(self):
|
37 |
+
return datasets.DatasetInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
features=datasets.Features(
|
40 |
+
{
|
41 |
+
"id": datasets.Value("int32"),
|
42 |
+
"name": datasets.Value("string"),
|
43 |
+
"image": datasets.Image(),
|
44 |
+
"label": datasets.ClassLabel(
|
45 |
+
num_classes=len(_LABELS),
|
46 |
+
names=_LABELS,
|
47 |
+
),
|
48 |
+
}
|
49 |
+
),
|
50 |
+
supervised_keys=None,
|
51 |
+
homepage=_HOMEPAGE,
|
52 |
+
citation=_CITATION,
|
53 |
+
)
|
54 |
+
|
55 |
+
def _split_generators(self, dl_manager):
|
56 |
+
images = dl_manager.download(f"{_DATA}images.tar.gz")
|
57 |
+
images = dl_manager.iter_archive(images)
|
58 |
+
return [
|
59 |
+
datasets.SplitGenerator(
|
60 |
+
name=datasets.Split.TRAIN,
|
61 |
+
gen_kwargs={
|
62 |
+
"images": images,
|
63 |
+
},
|
64 |
+
),
|
65 |
+
]
|
66 |
+
|
67 |
+
def _generate_examples(self, images):
|
68 |
+
for idx, ((image_path, image)) in enumerate(images):
|
69 |
+
label = "unloaded" if "unloaded" in image_path else "loaded"
|
70 |
+
|
71 |
+
yield idx, {
|
72 |
+
"id": idx,
|
73 |
+
"name": image_path,
|
74 |
+
"image": {"path": image_path, "bytes": image.read()},
|
75 |
+
"label": label,
|
76 |
+
}
|