File size: 5,065 Bytes
f92bf53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
<!DOCTYPE html>
<html lang="zh-TW">
<head>
<meta charset="UTF-8">
<title>Ollama 提示語推薦與查詢</title>
<style>
body { font-family: sans-serif; max-width: 600px; margin: 20px auto; }
.suggestion {
cursor: pointer;
padding: 8px;
border: 1px solid #ccc;
margin: 5px 0;
border-radius: 4px;
}
.suggestion:hover {
background-color: #eef;
}
textarea {
width: 100%;
height: 100px;
margin-top: 10px;
font-family: inherit;
padding: 8px;
}
button {
margin-top: 10px;
padding: 8px 16px;
}
pre {
background: #f9f9f9;
padding: 10px;
white-space: pre-wrap;
}
</style>
</head>
<body>
<h1>選擇模型並獲得建議提示</h1>
<label for="modelSelect">選擇模型:</label>
<select id="modelSelect">
<option value="">請選擇模型</option>
</select>
<button id="getSuggestions">取得建議提示</button>
<h3>建議提示:</h3>
<div id="suggestionList">(尚未載入)</div>
<h3>選擇的提示:</h3>
<textarea id="customPrompt" placeholder="請從上方建議中點選,或自行輸入 prompt..."></textarea>
<h3>選擇操作:</h3>
<select id="actionSelect">
<option value="create">創作</option>
<option value="explain">解釋</option>
</select>
<button id="generate">產生</button>
<h3>模型回應:</h3>
<pre id="responseOutput">(尚未查詢)</pre>
<script>
async function loadModels() {
try {
const res = await fetch('http://127.0.0.1:11434/api/tags');
const data = await res.json();
const select = document.getElementById('modelSelect');
data.models.forEach(model => {
const opt = document.createElement('option');
opt.value = model.name;
opt.textContent = model.name;
select.appendChild(opt);
});
} catch (err) {
console.error(err);
alert('無法載入模型,請確認 Ollama 是否已啟動');
}
}
async function getPromptSuggestions() {
const model = document.getElementById('modelSelect').value;
const container = document.getElementById('suggestionList');
if (!model) {
alert('請先選擇模型');
return;
}
container.innerHTML = '載入中...';
const prompt = `你是 ${model} 模型,請列出 3~5 個你擅長的提示語,每個換行顯示,不需要額外說明。`;
try {
const res = await fetch('http://127.0.0.1:11434/api/generate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ model, prompt, stream: false })
});
const data = await res.json();
const lines = data.response.split('\n').filter(l => l.trim());
container.innerHTML = '';
lines.forEach(line => {
const div = document.createElement('div');
div.className = 'suggestion';
div.textContent = line;
div.addEventListener('click', () => {
document.getElementById('customPrompt').value = line;
});
container.appendChild(div);
});
} catch (err) {
console.error(err);
container.innerHTML = '取得建議失敗';
}
}
async function generateResponse() {
const model = document.getElementById('modelSelect').value;
const prompt = document.getElementById('customPrompt').value.trim();
const action = document.getElementById('actionSelect').value;
const output = document.getElementById('responseOutput');
if (!model || !prompt) {
alert('請選擇模型並輸入 prompt');
return;
}
// 根據選擇的操作調整提示語
let finalPrompt = prompt;
if (action === 'create') {
finalPrompt = `您是該領域專家,請創作:${prompt}`; // 若選擇創作,前置"創作:"提示
} else if (action === 'explain') {
finalPrompt = `您是該領域專家,請解釋:${prompt}`; // 若選擇解釋,前置"解釋:"提示
}
output.textContent = '產生中...';
try {
const res = await fetch('http://127.0.0.1:11434/api/generate', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ model, prompt: finalPrompt, stream: false })
});
const data = await res.json();
output.textContent = data.response || '未收到回應';
} catch (err) {
console.error(err);
output.textContent = '產生失敗';
}
}
document.getElementById('getSuggestions').addEventListener('click', getPromptSuggestions);
document.getElementById('generate').addEventListener('click', generateResponse);
window.onload = loadModels;
</script>
</body>
</html>
|